Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Primary behaviour-based energy harvesting multihop cognitive radio network

In this study, a multihop transmission scheme in cognitive environment is investigated. Several number of decode and forward relays are deployed between the secondary source and the secondary destination. All the nodes harvest energy using a time splitting-based relaying scheme from radio-frequency signal of a primary beacon (PB). All the nodes use harvested energy to transmit data from a node to its next node. The maximum transmit power of any secondary node is limited by interference constraint at a primary receiver. The presence of PB is considered in the form of a regular periodic pattern. An expression for signal-to-noise ratio and ergodic capacity at each secondary node in the multihop network are derived. A closed form expression for the outage probability (OP) of the secondary network is derived for transient and steady-state condition in two different scenarios of arrival time period of PB (). The closed-form expression for the OP of the secondary network is validated with the simulation results for different system parameters such as harvesting efficiency, harvesting time, the number of SRs, the transmission power of PB. An optimum value of the presence duration of PB within the time period is also estimated. Further, impact of imperfect channel state information (CSI) of interfering links between secondary transmitting nodes and primary receiver is investigated on secondary OP and compared with the case of perfect CSI.

References

    1. 1)
      • 7. Hyadi, A., Benjillali, M., Alouini, M.-S., et al.: ‘Performance analysis of underlay cognitive multihop regenerative relaying systems with multiple primary receivers’, IEEE Trans. Wirel. Commun., 2013, 12, (12), pp. 64186429.
    2. 2)
      • 9. Barua, B., Safaei, F., Abolhasan, M.: ‘On the outage of multihop parallel relay networks’. 2010 IEEE 72nd Vehicular Technology Conf. Fall (VTC 2010-Fall), 2010, pp. 15.
    3. 3)
      • 27. Rehmani, M.H., Viana, A.C., Khalife, H., et al.: ‘Activity pattern impact of primary radio nodes on channel selection strategies’. Proc. of the 4th Int. Conf. Cognitive Radio and Advanced Spectrum Management, 2011, p. 36.
    4. 4)
      • 18. Nasir, A.A., Zhou, X., Durrani, S., et al.: ‘Relaying protocols for wireless energy harvesting and information processing’, IEEE Trans. Wirel. Commun., 2013, 12, (7), pp. 36223636.
    5. 5)
      • 29. Chen, J., Si, J., Li, Z., et al.: ‘On the performance of spectrum sharing cognitive relay networks with imperfect csi’, IEEE Commun. Lett., 2012, 16, (7), pp. 10021005.
    6. 6)
      • 22. Liu, Y., Mousavifar, S.A., Deng, Y., et al.: ‘Wireless energy harvesting in a cognitive relay network’, IEEE Trans. Wirel. Commun., 2016, 15, (4), pp. 24982508.
    7. 7)
      • 4. Dac-Binh, H.A., Bao, V.N.Q., Xuan-Nam, T., et al.: ‘Cognitive fixed-gain amplify-and-forward relay networks under interference constraints’, IEICE Trans. Commun., 2013, 96, (1), pp. 375378.
    8. 8)
      • 17. Sudevalayam, S., Kulkarni, P.: ‘Energy harvesting sensor nodes: survey and implications’, IEEE Commun. Surv. Tutor., 2011, 13, (3), pp. 443461.
    9. 9)
      • 32. Gradshteyn, I.S., Ryzhik, I.M.: ‘Table of integrals, series, and products’ (Academic Press, 2014).
    10. 10)
      • 1. Mitola, J., Maguire, G.Q.: ‘Cognitive radio: making software radios more personal’, IEEE Pers. Commun., 1999, 6, (4), pp. 1318.
    11. 11)
      • 16. Shim, K., Do, N.T., An, B., et al.: ‘Outage performance of physical layer security for multi-hop underlay cognitive radio networks with imperfect channel state information’. 2016 Int. Conf. Electronics, Information, and Communications (ICEIC), 2016, pp. 14.
    12. 12)
      • 5. Bao, V.N.Q., Thanh, T.T., Nguyen, T.D., et al.: ‘Spectrum sharing-based multi-hop decode-and-forward relay networks under interference constraints: performance analysis and relay position optimization’, J. Commun. Netw., 2013, 15, (3), pp. 266275.
    13. 13)
      • 31. Bao, V.N.Q., Duong, T.Q., Tellambura, C.: ‘On the performance of cognitive underlay multihop networks with imperfect channel state information’, IEEE Trans. Commun., 2013, 61, (12), pp. 48644873.
    14. 14)
      • 8. Gui, B., Dai, L., Cimini, L.J.: ‘Routing strategies in multihop cooperative networks’, IEEE Trans. Wirel. Commun., 2009, 8, (2), pp. 843855.
    15. 15)
      • 10. Mao, M., Cao, N., Chen, Y., et al.: ‘Multi-hop relaying using energy harvesting’, IEEE Wirel. Commun. Lett., 2015, 4, (5), pp. 565568.
    16. 16)
      • 25. Banerjee, A., Maity, S.P., Roy, S.: ‘On residual energy maximization in energy harvesting cognitive radio network’. 2017 IEEE Wireless Communications and Networking Conf. (WCNC), 2017, pp. 16.
    17. 17)
      • 6. Najafi, M., Ardebilipour, M., Soleimani-Nasab, E., et al.: ‘Multi-hop cooperative communication technique for cognitive df and af relay networks’, Wirel. Pers. Commun., 2015, 83, (4), pp. 32093221.
    18. 18)
      • 21. Zhang, H., Huang, S., Jiang, C., et al.: ‘Energy efficient user association and power allocation in millimeter wave based ultra dense networks with energy harvesting base stations’, 2017, arXiv preprint arXiv:1704.07037.
    19. 19)
      • 13. Jeong, C., Kim, I.-M.: ‘Optimal power allocation for secure multicarrier relay systems’, IEEE Trans. Signal Process., 2011, 59, (11), pp. 54285442.
    20. 20)
      • 12. Zhang, H., Jiang, C., Beaulieu, N.C., et al.: ‘Resource allocation for cognitive small cell networks: a cooperative bargaining game theoretic approach’, IEEE Trans. Wirel. Commun., 2015, 14, (6), pp. 34813493.
    21. 21)
      • 19. Nasir, A.A., Zhou, X., Durrani, S., et al.: ‘Throughput and ergodic capacity of wireless energy harvesting based df relaying network’. 2014 IEEE Int. Conf. Communications (ICC), 2014, pp. 40664071.
    22. 22)
      • 15. Zhang, H., Jiang, C., Mao, X., et al.: ‘Interference-limited resource optimization in cognitive femtocells with fairness and imperfect spectrum sensing’, IEEE Trans. Veh. Technol., 2016, 65, (3), pp. 17611771.
    23. 23)
      • 11. Jiang, C., Zhang, H., Ren, Y., et al.: ‘Energy-efficient non-cooperative cognitive radio networks: micro, meso, and macro views’, IEEE Commun. Mag., 2014, 52, (7), pp. 1420.
    24. 24)
      • 28. Saleem, Y., Rehmani, M.H.: ‘Primary radio user activity models for cognitive radio networks: a survey’, J. Netw. Comput. Appl., 2014, 43, pp. 116.
    25. 25)
      • 30. Zhang, X., Xing, J., Yan, Z., et al.: ‘Outage performance study of cognitive relay networks with imperfect channel knowledge’, IEEE Commun. Lett., 2013, 17, (1), pp. 2730.
    26. 26)
      • 23. Zhang, J., Nguyen, N.-P., Zhang, J., et al.: ‘Impact of primary networks on the performance of energy harvesting cognitive radio networks’, IET Commun., 2016, 10, (18), pp. 25592566.
    27. 27)
      • 26. Mariani, A., Kandeepan, S., Giorgetti, A.: ‘Periodic spectrum sensing with non-continuous primary user transmissions’, IEEE Trans. Wirel. Commun., 2015, 14, (3), pp. 16361649.
    28. 28)
      • 20. Zhang, H., Du, J., Cheng, J., et al.: ‘Resource allocation in swipt enabled heterogeneous cloud small cell networks with incomplete csi’. 2016 IEEE Global Communications Conf. (GLOBECOM), 2016, pp. 15.
    29. 29)
      • 14. Zhang, H., Xing, H., Cheng, J., et al.: ‘Secure resource allocation for ofdma two-way relay wireless sensor networks without and with cooperative jamming’, IEEE Trans. Ind. Inf., 2016, 12, (5), pp. 17141725.
    30. 30)
      • 24. Xu, C., Zheng, M., Liang, W., et al.: ‘Outage performance of underlay multi-hop cognitive relay networks with energy harvesting’, IEICE Trans. Commun., 2016, 6, (20), pp. 11481151.
    31. 31)
      • 2. Tuyen, L.P., Bao, V.N.Q.: ‘Outage performance analysis of dual-hop af relaying system with underlay spectrum sharing’. 2012 14th Int. Conf. Advanced Communication Technology (ICACT), 2012, pp. 481486.
    32. 32)
      • 3. Duong, T.Q., Bao, V.N.Q., Zepernick, H.-J.: ‘Exact outage probability of cognitive af relaying with underlay spectrum sharing’, Electron. Lett., 2011, 47, (17), pp. 10011002.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.0241
Loading

Related content

content/journals/10.1049/iet-com.2017.0241
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address