Your browser does not support JavaScript!

access icon free Enhanced local density estimation in internet of vehicles

The Internet of vehicles allows connecting vehicles to the Internet to make all data from vehicles available for applications aimed towards improving safety and comfort for passengers. Density is one of the most important sensed data to gather. This information is mainly obtained through periodic messages broadcast by the neighbouring vehicles. However, the availability of this information depends on the Internet. A low penetration rate of Internet of vehicles, or the loss of Internet connection, can significantly affect the accuracy of the sensed density. Moreover, the reception rate of the periodic messages seriously drops at short distances caused by the broadcast storm problem in high-density scenarios. To address this problem, using inter-vehicular communications, we propose a segment-based approach for enhancing the accuracy of the local density estimation. This approach provides a highly accurate estimation with low overhead over the maximum vehicles transmission range to all the vehicles. The proposed approach is extensively evaluated analytically and by simulation. Performance evaluation results show that our approach SLDE allows about 3% of mean error ratio with low overhead over the maximum transmission range.


    1. 1)
      • 7. Panichpapiboon, S., Pattara-atikom, W.: ‘Evaluation of a neighbor-based vehicle density estimation scheme’. 8th Int. Conf. ITS Telecommunications, ITST 2008, 2008, pp. 294298.
    2. 2)
      • 19. Chen, Q., Schmidt-Eisenlohr, F., Jiang, D., et al: ‘Overhaul of ieee 802.11 modeling and simulation in ns-2’. Proc. 10th ACM Symp. Modeling, Analysis, and Simulation of Wireless and Mobile Systems, MSWiM ’07, New York, NY, USA, 2007, pp. 159168.
    3. 3)
      • 6. Shirani, R., Hendessi, F., Gulliver, T.A.: ‘Store-carry-forward message dissemination in vehicular ad-hoc networks with local density estimation’. Veh. Technol. Conf. Fall (VTC 2009-Fall), 2009 IEEE 70th, 2009, pp. 16.
    4. 4)
      • 1. Yang, F., Wang, S., Li, J., et al: ‘An overview of internet of vehicles’, China Commun., 2014, 11, (10), pp. 115.
    5. 5)
      • 2. Schmidt, R.K., Kloiber, B., Schuttler, F., et al.: ‘Degradation of communication range in VANETs caused by interference 2.0 – real-world experimentLecture Notes in Computer Science (Springer Berlin Heidelberg, Berlin, Heidelberg, 2011), pp. 176188.
    6. 6)
      • 16. Killat, M., Hartenstein, H.: ‘An empirical model for probability of packet reception in vehicular ad hoc networks’, EURASIP J. Wirel. Commun. Netw., 2009, 2009, pp. 112.
    7. 7)
      • 11. Umer, T., Ding, Z., Honary, B., et al: ‘Implementation of microscopic parameters for density estimation of heterogeneous traffic flow for vanet’. 2010 7th Int. Symp. Communication Systems Networks and Digital Signal Processing (CSNDSP)', 2010, pp. 6670.
    8. 8)
      • 4. Jerbi, M., Senouci, S.M., Rasheed, T., et al: ‘An infrastructure-free traffic information system for vehicular networks’. 2007 IEEE 66th Vehicular Technology Conf., 2007, pp. 20862090.
    9. 9)
      • 8. Akhtar, N., Ergen, S.C., Ozkasap, O.: ‘Analysis of distributed algorithms for density estimation in vanets (poster)’. 2012 IEE Vehicular Networking Conf. (VNC), 2012, pp. 157164.
    10. 10)
      • 9. Torrent-Moreno, M., Mittag, J., Santi, P., et al: ‘Vehicle-to-vehicle communication: Fair transmit power control for safety-critical information’, IEEE Trans. Veh. Technol., 2009, 58, (7), pp. 36843703.
    11. 11)
      • 5. Artimy, M.: ‘Local density estimation and dynamic transmission-range assignment in vehicular ad hoc networks’, IEEE Trans. Intell. Transp. Syst., 2007, 8, (3), pp. 400412.
    12. 12)
      • 18. Fall, K., Varadhan, K.: ‘The network simulator (ns-2)’., 2012.
    13. 13)
      • 10. Mittag, J., Schmidt-Eisenlohr, F., Killat, M., et al: ‘Analysis and design of effective and low-overhead transmission power control for vanets’. Proc. Fifth ACM Int. Workshop on Vehicular Inter-Networking, VANET '08, New York, NY, USA, 2008, pp. 3948.
    14. 14)
      • 14. Gerlough, D.L., Huber, M.J.: ‘Traffic flow theory: a monograph’ (Transportation research board, National Research Council, Washington, DC, 1975).
    15. 15)
      • 17. Jiang, D., Chen, Q., Delgrossi, L.: ‘Communication density: a channel load metric for vehicular communications research’. ‘IEEE Int. Conf. Mobile Adhoc and Sensor Systems, 2007. MASS 2007, 2007, pp. 18.
    16. 16)
      • 3. Bauza, R., Gozalvez, J.: ‘Traffic congestion detection in large-scale scenarios using vehicle-to-vehicle communications’, J. Netw. Comput. Appl., 2013, 36, (5), pp. 12951307.
    17. 17)
      • 13. Garelli, L., Casetti, C., Chiasserini, C.F., et al: ‘Mobsampling: V2v communications for traffic density estimation’. 2011 IEEE 73rd Vehicular Technology Conf. (VTC Spring)', 2011, pp. 15.
    18. 18)
      • 15. Haouari, N., Moussaoui, S., Guerroumi, M., et al: ‘Local density estimation for vanets’. 2016 Global Information Infrastructure and Networking Symp. (GIIS)', 2016, pp. 16.
    19. 19)
      • 12. Khomami, G., Veeraraghava, P., Fontan, F.P.: ‘Node density estimation in VANETs using received signal power’, Radioengineering, 2015, 24, (2), pp. 489498.
    20. 20)
      • 20. Trans Res Board: ‘Highway capacity manual’ (Transportation Research Board, National Research Council, Washington, DC, 2000).

Related content

This is a required field
Please enter a valid email address