access icon free Performance of multicarrier cooperative communication systems over underwater acoustic channels

Multicarrier transmission in the form of orthogonal frequency division multiplexing (OFDM) is an efficient method to handle inter-symbol interference resulting from the frequency selectivity of the underwater acoustic (UWA) channels. OFDM can be further combined with cooperative transmission to benefit from the spatial diversity advantages and improve the performance over conventional point-to-point UWA communication systems. In this study, the authors consider a cooperative OFDM UWA communication system and investigate the outage performance for both amplify-and-forward relaying and decode-and-forward (DF) relaying. They derive expressions for bounds on outage probability and outage capacity. Monte Carlo simulations corroborate and quantify the enhanced performance of cooperative OFDM UWA communication compared with direct transmission systems. Through numerical simulations, they investigate the impact of geometry on outage probability and signal-to-noise ratio requirements in cooperative OFDM UWA communication with DF relaying. Furthermore, the authors analyse the effects of relay location and carrier frequency on the outage probability for both relaying schemes.

Inspec keywords: cooperative communication; intersymbol interference; geometry; numerical analysis; underwater acoustic communication; OFDM modulation; Monte Carlo methods; wireless channels; probability; telecommunication network reliability; diversity reception; amplify and forward communication; decode and forward communication

Other keywords: DF relaying; underwater acoustic channels; relay location; spatial diversity; carrier frequency; signal-to-noise ratio requirements; frequency selectivity; amplify-and-forward relaying; orthogonal frequency division multiplexing; cooperative OFDM UWA communication system; Monte Carlo simulations; multicarrier cooperative communication systems; numerical simulations; intersymbol interference; outage capacity; point-to-point UWA communication systems; outage performance; decode-and-forward relaying; UWA channels; multicarrier transmission; cooperative transmission; outage probability

Subjects: Electromagnetic compatibility and interference; Other numerical methods; Monte Carlo methods; Radio links and equipment; Acoustic and other telecommunication systems and equipment; Combinatorial mathematics; Modulation and coding methods; Reliability

References

    1. 1)
      • 31. Bejjani, E., Belfiore, J.C.: ‘Multicarrier coherent communications for the underwater acoustic channel’. OCEANS 96 MTS/IEEE Conf. Proc., 1996, pp. 11251130.
    2. 2)
      • 3. Aval, Y.M., Stojanovic, M.: ‘Differentially coherent multichannel detection of acoustic OFDM signals’, IEEE J. Ocean. Eng., 2015, 40, (2), pp. 251268.
    3. 3)
      • 28. Alves, H., Souza, R.D.: ‘Selective decode-and-forward using fixed relays and packet accumulation’, IEEE Commun. Lett., 2011, 15, (7), pp. 707709.
    4. 4)
      • 12. Rahmati, M., Duman, T.M.: ‘Achieving delay diversity in asynchronous underwater acoustic (UWA) cooperative communication systems’, IEEE Trans. Wirel. Commun., 2014, 13, (3), pp. 13671379.
    5. 5)
      • 15. Chen, Y., Wang, Z., Wan, L., et al: ‘OFDM-modulated dynamic coded cooperation in underwater acoustic channels’, IEEE J. Ocean. Eng., 2015, 40, (1), pp. 159168.
    6. 6)
      • 5. Radosevic, A., Ahmed, R., Duman, T.M., et al: ‘Adaptive OFDM modulation for underwater acoustic communications: design considerations and experimental results’, IEEE J. Ocean. Eng., 2014, 39, (2), pp. 357370.
    7. 7)
      • 9. Cao, R., Qu, F., Yang, L.: ‘Asynchronous amplify-and-forward relay communications for underwater acoustic networks’, IET Commun., 2016, 10, (6), pp. 677684.
    8. 8)
      • 20. Chitre, M.: ‘A high-frequency warm shallow water acoustic communications channel model and measurements’, J. Acoust. Soc. Am., 2007, 122, (5), pp. 25802586.
    9. 9)
      • 7. Laneman, J.N., Tse, D.N., Wornell, G.W.: ‘Cooperative diversity in wireless networks: Efficient protocols and outage behavior’, IEEE Trans. Inf. Theory, 2004, 50, (12), pp. 30623080.
    10. 10)
      • 19. Zhang, Y., Huang, Y., Wan, L., et al: ‘Adaptive OFDMA with partial CSI for downlink underwater acoustic communications’, J. Commun. Netw., 2016, 18, (3), pp. 387396.
    11. 11)
      • 11. Al-Dharrab, S., Uysal, M.: ‘Information theoretic performance of cooperative underwater acoustic communications’. IEEE 22nd Int. Symp. Personal, Indoor and Mobile Radio Communications, 2011, pp. 15621566.
    12. 12)
      • 32. Abramowitz, M., Stegun, I.A.: ‘Handbook of mathematical functions: with formulas, graphs, and mathematical tables’ (Dover, New York, 1972).
    13. 13)
      • 33. Castaño-Martínez, A., López-Blázquez, F.: ‘Distribution of a sum of weighted noncentral chi-square variables’, Soc. Estadística Invest. Oper. Test, 2005, 14, (2), pp. 397415.
    14. 14)
      • 1. Al-Dharrab, S., Uysal, M., Duman, T.M.: ‘Cooperative underwater acoustic communications’, IEEE Commun. Mag., 2013, 51, (7), pp. 146153.
    15. 15)
      • 14. Tu, K., Duman, T.M., Proakis, J.G., et al: ‘Cooperative MIMO-OFDM communications: receiver design for Doppler-distorted underwater acoustic channels’. IEEE Conf. Record of the 44th Asilomar Conf. Signals, Systems and Computers, 2010, pp. 13351339.
    16. 16)
      • 26. Ochiai, H., Mitran, P., Tarokh, V.: ‘Variable-rate two-phase collaborative communication protocols for wireless networks’, IEEE Trans. Inf. Theory, 2006, 52, (9), pp. 42994313.
    17. 17)
      • 27. Bolcskei, H., Gesbert, D., Paulraj, A.J.: ‘On the capacity of OFDM-based spatial multiplexing systems’, IEEE Trans. Commun., 2002, 50, (2), pp. 225234.
    18. 18)
      • 23. Bjerrum-Niese, C., Lutzen, R.: ‘Stochastic simulation of acoustic communication in turbulent shallow water’, IEEE J. Ocean. Eng., 2000, 25, (4), pp. 523532.
    19. 19)
      • 21. Radosevic, A., Proakis, J.G., Stojanovic, M.: ‘Statistical characterization and capacity of shallow water acoustic channels’. IEEE OCEANS, 2009, pp. 18.
    20. 20)
      • 29. Hodgkiss, W., Preisig, J.: ‘Kauai Acomms MURI 2011 (KAM11) experiment’. 11th European Conf. Underwater Acoustics (ECUA 2012) Proc., 2012, pp. 9931000.
    21. 21)
      • 24. Stojanovic, M.: ‘Low complexity OFDM detector for underwater acoustic channels’. IEEE OCEANS, 2006, pp. 16.
    22. 22)
      • 13. Cheng, X., Yang, L., Cheng, X.: ‘Adaptive relay-aided OFDM underwater acoustic communications’. IEEE Int. Conf. Communications (ICC), 2015, pp. 15351540.
    23. 23)
      • 6. Liu, Z., Yang, T.C.: ‘On overhead reduction in time-reversed OFDM underwater acoustic communications’, IEEE J. Ocean. Eng., 2014, 39, (4), pp. 788800.
    24. 24)
      • 25. Francois, R., Garrison, G.: ‘Sound absorption based on ocean measurements. Part II: Boric acid contribution and equation for total absorption’, J. Acoust. Soc. Am., 1982, 72, (6), pp. 18791890.
    25. 25)
      • 2. Pompili, D., Akyildiz, I.F.: ‘Overview of networking protocols for underwater wireless communications’, IEEE Commun. Mag., 2009, 47, (1), pp. 97102.
    26. 26)
      • 22. Geng, X., Zielinski, A.: ‘An eigenpath underwater acoustic communication channel model’. IEEE OCEANS '95. MTS/IEEE Conf. Proc., 1995, pp. 11891196.
    27. 27)
      • 17. Wang, Z., Zhou, S., Catipovic, J., et al: ‘Asynchronous multiuser reception for OFDM in underwater acoustic communications’, IEEE Trans. Wirel. Commun., 2013, 12, (3), pp. 10501061.
    28. 28)
      • 16. Amar, A., Avrashi, G., Stojanovic, M.: ‘Low complexity residual Doppler shift estimation for underwater acoustic multicarrier communication’, IEEE Trans. Signal Process., 2016, PP, (99), pp. 11.
    29. 29)
      • 10. Panayirci, E., Senol, H., Uysal, M., et al: ‘Sparse channel estimation and equalization for OFDM-based underwater cooperative systems with amplify-and-forward relaying’, IEEE Trans. Signal Process., 2016, 64, (1), pp. 214228.
    30. 30)
      • 4. Zakharov, Y.V., Morozov, A.K.: ‘OFDM transmission without guard interval in fast-varying underwater acoustic channels’, IEEE J. Ocean. Eng., 2015, 40, (1), pp. 144158.
    31. 31)
      • 18. Ma, L., Zhou, S., Qiao, G., et al: ‘Superposition coding for downlink underwater acoustic OFDM’, IEEE J. Ocean. Eng., 2017, 42, (1), pp. 175187.
    32. 32)
      • 8. Uysal, M.: ‘Cooperative communications for improved wireless network transmission: framework for virtual antenna array applications: framework for virtual antenna array applications’. IGI Global, 2009.
    33. 33)
      • 30. Radosevic, A., Fertonani, D., Duman, T.M., et al: ‘Capacity of MIMO systems in shallow water acoustic channels’. IEEE Conf. Record of the 44th Asilomar Conf. Signals, Systems and Computers, 2010, pp. 21642168.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.0037
Loading

Related content

content/journals/10.1049/iet-com.2017.0037
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading