http://iet.metastore.ingenta.com
1887

Preamble-based synchronisation scheme for electromagnetic wireless nanocommunications

Preamble-based synchronisation scheme for electromagnetic wireless nanocommunications

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Terahertz band (0.1–10 THz) nanocommunications are expected to have a plethora of biomedical, industrial, and military applications. A pulse-based modulation scheme could enable communications among nano-devices. Nevertheless, synchronisation could be a significant performance limiting factor and an arduous task to accomplish considering the huge bandwidth of the transmitted pulse, and the simple design and energy constraint requirements of the nano-transceivers. This study proposes a novel synchronisation scheme for pulse-based nanocommunication based on a continuous-time moving average (CTMA) algorithm. Since CTMA uses an energy collection approach, it does not increase the energy and complexity requirements of nano-transceivers. This approach is based on continuously moving sub-integration windows and searching for the maximum energy over the entire preamble duration. The simulation results showed that using the proposed scheme, for a distance of up to 5 mm, a synchronisation probability of >0.7 was obtained for a signal energy to noise ratio (SNR) of 20 dB. The results showed good performance in terms of the tradeoff among the synchronisation probability, SNR, and distance between nanonodes. Moreover, synchronisation error was also evaluated to check the overall performance of the scheme. Altogether, the proposed scheme makes an appropriate step forward to enable nanocommunication among resource-constrained nanonetworks.

References

    1. 1)
      • 1. Akyildiz, I.F., Brunetti, F., Blázquez, C.: ‘Nanonetworks: a new communication paradigm’, Comput. Netw., 2008, 52, (12), pp. 22602279.
    2. 2)
      • 2. Akyildiz, I.F., Jornet, J.M.: ‘Electromagnetic wireless nanosensor networks’, Nano Commun. Netw., 2010, 1, (1), pp. 319.
    3. 3)
      • 3. Dubach, J.M., Harjes, D.I., Clark, H.A.: ‘Fluorescent ion-selective nanosensors for intracellular analysis with improved lifetime and size’, Nano Lett.., 2007, 7, (6), pp. 18271831.
    4. 4)
      • 4. Riu, J., Maroto, A., Rius, F.X.: ‘Nanosensors in environmental analysis’, Talanta, 2006, 69, (2), pp. 288301.
    5. 5)
      • 5. Jornet, J.M., Akyildiz, I.F.: ‘Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks’, IEEE J. Sel. Areas Commun., 2013, 31, (12), pp. 685694.
    6. 6)
      • 6. Avouris, P.: ‘Carbon nanotube electronics and photonics’, Phys. Today, 2009, 62, (1), pp. 3440.
    7. 7)
      • 7. Kim, P.: ‘Toward carbon based electronics’. Proc. of Device Research Conf., IEEE, June 2008, pp. 99.
    8. 8)
      • 8. Atakan, B., Akan, O.B.: ‘Carbon nanotube-based nanoscale ad hoc networks’, IEEE Commun. Mag., 2010, 48, (6), pp. 129135.
    9. 9)
      • 9. Jornet, J.M., Akyildiz, I.F.: ‘Femtosecond-long pulse-based modulation for terahertz band communication in nanonetworks’, IEEE Trans. Commun., 2014, 62, (5), pp. 17421754.
    10. 10)
      • 10. Knap, W., Teppe, F., Dyakonova, N., et al: ‘Plasma wave oscillations in nanometer field effect transistors for terahertz detection and emission’, J. Phys.: Conden. Matter, 2008, 20, (38), p. 384205.
    11. 11)
      • 11. Vicarelli, L., Vitiello, M.S., Coquillat, D., et al: ‘Graphene field-effect transistors as room-temperature terahertz detectors’, Nature Mater., 2012, 11, (10), pp. 865871.
    12. 12)
      • 12. Weisenhorn, M., Hirt, W.: ‘Robust noncoherent receiver exploiting UWB channel properties’. Proc. of IEEE Int. Workshop on Ultra Wideband Systems Joint with Conf. Ultra Wideband Systems and Technologies, Joint UWBST and IWUWBS, Kyoto, Japan, May 2004, pp. 156160.
    13. 13)
      • 13. Oh, M.K., Jung, B., Harjani, R., et al: ‘A new noncoherent UWB impulse radio receiver’, IEEE Commun. Lett., 2005, 9, (2), pp. 151153.
    14. 14)
      • 14. Lee, S.W., Park, Y.J., Kim, K.H.: ‘Design and implementation of energy-collection-based low complexity IR-UWB receiver’, IEICE Trans. Fund. Electron. Commun. Comput. Sciences, 2008, 91, (2), pp. 704708.
    15. 15)
      • 15. Mercier, P.P., Bhardwaj, M., Daly, D.C., et al: ‘A low-voltage energy-sampling IR-UWB digital baseband employing quadratic correlation’, IEEE J. Solid-State Circuits, 2010, 45, (6), pp. 12091219.
    16. 16)
      • 16. Gerosa, A., Soldà, S., Bevilacqua, A., et al: ‘An energy-detector for noncoherent impulse-radio UWB receivers’, IEEE Trans. Circ Syst I Reg. Papers, 2009, 56, (5), pp. 10301040.
    17. 17)
      • 17. Cid-Fuentes, R.G., Jornet, J.M., Akyildiz, I.F., et al: ‘A receiver architecture for pulse-based electromagnetic nanonetworks in the terahertz band’. IEEE Int. Conf. on Commun. (ICC), IEEE, June 2012, pp. 49374942.
    18. 18)
      • 18. He, N., Tepedelenlioglu, C.: ‘Joint pulse and symbol level acquisition of UWB receivers’, IEEE Trans. Wirel. Commun., 2008, 7, (1), pp. 614.
    19. 19)
      • 19. Carbonelli, C., Mengali, U.: ‘Synchronization algorithms for UWB signals’, IEEE Trans. Commun., 2006, 54, (2), pp. 329338.
    20. 20)
      • 20. Lottici, V., D'Andrea, A., Mengali, U.: ‘Channel estimation for ultra-wideband communications’, IEEE J. Sel Areas Commun., 2002, 20, (9), pp. 16381645.
    21. 21)
      • 21. Maravic, I., Vetterli, M.: ‘Low-complexity subspace methods for channel estimation and synchronization in ultra-wideband systems’. Proc. Int. Workshop on Ultra-Wideband Systems (IWUWB), Oulu, Finland, 2003, No. LCAV-CONF-2003-011.
    22. 22)
      • 22. Yang, L., Tian, Z., Giannakis, G.B.: ‘Non-data aided timing acquisition of ultra-wideband transmissions using cyclostationarity’. Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP'03), April 2003, vol. 4, pp. IV121.
    23. 23)
      • 23. Stoica, L., Rabbachin, A., Oppermann, I.: ‘A low-complexity noncoherent IR-UWB transceiver architecture with TOA estimation’, IEEE Trans. Microw. Theory Tech., 2006, 54, (4), p. 1637.
    24. 24)
      • 24. Rabbachin, A., Oppermann, I.: ‘Synchronization analysis for UWB systems with a low-complexity energy collection receiver’. Int. Workshop on Ultra Wideband Systems Joint with Conf. on Ultrawideband Systems and Technologies, Joint UWBST and IWUWBS, IEEE, Kyoto, Japan, May 2004, pp. 288292.
    25. 25)
      • 25. Stoica, L., Rabbachin, A., Repo, H.O., et al: ‘An ultrawideband system architecture for tag based wireless sensor networks’, IEEE Trans. Veh. Technol., 2005, 54, (5), pp. 16321645.
    26. 26)
      • 26. Jung, S.Y.: ‘Design of a preamble signal for synchronization in ultra-wideband noncoherent energy detection receivers’, Int. J. Commun. Syst., 2013, 26, (4), pp. 465480.
    27. 27)
      • 27. Gupta, A., Medley, M., Jornet, J.M.: ‘Joint synchronization and symbol detection design for pulse-based communications in the THz band’. 2015 IEEE Global Commun. Conf. (GLOBECOM), IEEE, December 2015, pp. 17.
    28. 28)
      • 28. Jornet, J.M., Akyildiz, I.F.: ‘Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band’, IEEE Trans. Wirel. Commun., 2011, 10, (10), pp. 32113221.
    29. 29)
      • 29. Han, C., Bicen, A.O., Akyildiz, I.F.: ‘Multi-ray channel modeling and wideband characterization for wireless communications in the terahertz band’, IEEE Trans. Wirel. Commun., 2015, 14, (5), pp. 24022412.
    30. 30)
      • 30. Llatser, I., Mestres, A., Abadal, S., et al: ‘Time-and frequency-domain analysis of molecular absorption in short-range terahertz communications’, IEEE Antennas and Wireless Propagation Lett., 2015, 14, pp. 350353.
    31. 31)
      • 31. Sordan, R., Traversi, F., Russo, V.: ‘Logic gates with a single graphene transistor’, Appl. Phys. Lett., 2009, 94, (7), p. 073305.
    32. 32)
      • 32. Ibrahim, J., Buehrer, R.M.: ‘Two-stage acquisition for UWB in dense multipath’, IEEE J. Sel. Areas Commun., 2006, 24, (4), pp. 801807.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2016.1365
Loading

Related content

content/journals/10.1049/iet-com.2016.1365
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address