Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Performance analysis of packet layer FEC codes and interleaving in FSO channels

The combination of forward error correction (FEC) and interleaving can be used to improve free-space optical communication systems. Recent research has optimised the codeword length and interleaving depth under the assumption of a fixed buffering size; however, how the buffering size influences the system performance remains unsolved. This study models the system performance as a function of buffering size and FEC recovery threshold, which allows system designers to determine optimum parameters in consideration of the overhead. The modelling is based on statistics of temporal features of correct data reception and burst error length through the measurement of the channel good time and outage time. The experimental results show good coherence with the theoretical values. This method can also be applied in other channels if a continuous-time-Markov-chain model of the channel can be derived.

References

    1. 1)
      • 16. Barua, B., Barua, D.: ‘Analysis the performance of a LDPC coded FSO system with Q-ary pulse-position modulation’. Int. Conf. Computer Research and Development (ICCRD), Shanghai, China, March 2011, vol. 1, pp. 339343.
    2. 2)
      • 9. Yang, G., Khalighi, M.A., Virieux, T., et al: ‘Contrasting space-time schemes for MIMO FSO systems with non-coherent modulation’. 2012 Int. Workshop on Optical Wireless Communications (IWOW), Pisa, Italy, October 2012, pp. 13.
    3. 3)
      • 23. Tong, S.R., Yu, Y.T.: ‘Adaptation of near-perfect packet-level FEC interleaving in mobile media streaming’, Comput. J., 2013, 57, (11), pp. 17111722.
    4. 4)
      • 22. Celandroni, N., Gotta, A.: ‘Performance analysis of systematic upper layer FEC codes and interleaving in land mobile satellite channels’, IEEE Trans. Veh. Technol., 2011, 60, (4), pp. 18871894.
    5. 5)
      • 26. Kolka, Z., Biolková, V., Biolek, D.: ‘Simulation of FSO transmission channel’. Proc. Seventh Conf. Circuits, Systems, Electronics, Control and Signal Processing, Tenerife, Spain, December 2008, pp. 186190.
    6. 6)
      • 17. Tzimpragos, G., Kachris, C., Djordjevic, I.B., et al: ‘A survey on FEC codes for 100 G and beyond optical networks’, IEEE Commun. Surv. Tutor., 2014, 18, (1), pp. 209221.
    7. 7)
      • 2. Leitgeb, E., Plank, T., Pezzei, P., et al: ‘Integration of FSO in local area networks - combination of optical wireless with WLAN and DVB-T for last mile internet connections’. 2014 19th European Conf. Networks and Optical Communications (NOC), Milan, Italy, June 2014, pp. 120125.
    8. 8)
      • 21. Wilhelmsson, L., Milstein, L.B.: ‘On the effect of imperfect interleaving for the Gilbert–Elliott channel’, IEEE Trans. Commun., 1999, 47, (5), pp. 681688.
    9. 9)
      • 6. Kaur, P., Jain, V.K., Kar, S.: ‘BER performance improvement of FSO links with aperture averaging and receiver diversity technique under various atmospheric conditions’. 2014 Ninth Int. Conf. Industrial and Information Systems (ICIIS), Gwalior, India, December 2014, pp. 16.
    10. 10)
      • 11. Mai, V.V., Thang, T.C., Pham, A.T.: ‘Performance of TCP over free-space optical atmospheric turbulence channels’, J. Opt. Commun. Netw., 2013, 5, (11), pp. 11681177.
    11. 11)
      • 18. Kaimin, W., Bo, L., Lijia, Z., et al: ‘Review of coded modulation free space optical communication system’, China Commun., 2015, 12, (11), pp. 117.
    12. 12)
      • 27. Gilbert, E.N.: ‘Capacity of a burst-noise channel’, Bell Syst. Tech. J., 1960, 39, (5), pp. 12531265.
    13. 13)
      • 10. Leitgeb, E., Awan, M.S., Brandl, P., et al: ‘Current optical technologies for wireless access’. Int. Conf. Telecommunications (ConTEL), Zagreb, Croatia, June 2009, pp. 717.
    14. 14)
      • 13. Sonnenberg, J., Oyler, M., Peach, R., et al: ‘Routing impact in highly dynamic mesh networks of RF and FSO links’. Military Communications Conf. (MILCOM), October 2009, pp. 17.
    15. 15)
      • 7. Prakash, G., Nigam, R.: ‘Effect of tropical climate on the propagation characteristics of terrestrial FSO links: a case study’. Free-Space Laser Communication and Atmospheric Propagation XXIX, San Francisco, USA, January 2017, vol. 10096, p. 100961H-12.
    16. 16)
      • 19. Henniger, H.: ‘Link performance of mobile optical links’. Proc. SPIE 6709, Free-Space Laser Communications VII, San Diego, CA, August 2007, p. 670913.
    17. 17)
      • 28. Epple, B.: ‘Simplified channel model for simulation of free-space optical communications’, J. Opt. Commun. Netw., 2010, 2, (5), pp. 293304.
    18. 18)
      • 29. Neumann, C., Roca, V., Walsh, R.: ‘Large scale content distribution protocols’, ACM SIGCOMM Comput. Commun. Rev., 2005, 35, (5), pp. 8592.
    19. 19)
      • 15. Tapse, H., Borah, D.K., Perez-Ramirez, J.: ‘Hybrid optical/RF channel performance analysis for turbo codes’, IEEE Trans. Commun., 2011, 59, (5), pp. 13891399.
    20. 20)
      • 20. Frossard, P.: ‘FEC performance in multimedia streaming’, IEEE Commun. Lett., 2001, 5, (3), pp. 122124.
    21. 21)
      • 25. Wu, Z., Giggenbach, D., Lankl, B.: ‘Improved Markov models for terrestrial free-space optical links’, IET Optoelectron., 2015, 9, (5), pp. 218222.
    22. 22)
      • 5. Stassinakis, A.N., Nistazakis, H.E., Peppas, K.P., et al: ‘Improving the availability of terrestrial FSO links over log normal atmospheric turbulence channels using dispersive chirped Gaussinulses’, Opt. Laser Technol., 2013, 54, pp. 329334.
    23. 23)
      • 12. Li, Y., Pappas, N., Angelakis, V., et al: ‘Resilient topology design for free space optical cellular backhaul networking’. 2014 IEEE Globecom Workshops (GC Wkshps), Austin, USA, December 2014, pp. 487492.
    24. 24)
      • 14. Davidson, F.M., Koh, Y.T.: ‘Interleaved convolutional coding for the turbulent atmospheric optical communication channel’, IEEE Trans. Commun., 1988, 36, (9), pp. 9931003.
    25. 25)
      • 3. Begley, D.L.: ‘Free-space laser communications: a historical perspective’. Annual Meeting of the IEEE, Glasgow, Scotland, November 2002, vol. 2, pp. 391392.
    26. 26)
      • 4. Rabinovich, W.S., Moore, C.I., Burris, H.R., et al: ‘Free space optical communications research at the U.S. Naval Research Laboratory’. Proc. SPIE 7587, Free-Space Laser Communication Technologies XXII, San Francisco, USA, January 2010, vol. 7587, pp. 758702.
    27. 27)
      • 24. Mostafa, A., Hranilovic, S.: ‘Channel measurement and Markov modeling of an urban free-space optical link’, J. Opt. Commun. Netw., 2012, 4, (10), pp. 836846.
    28. 28)
      • 1. Khalighi, M.A., Uysal, M.: ‘Survey on free space optical communication: a communication theory perspective’, IEEE Commun. Surv. Tutor., 2014, 16, (4), pp. 22312258.
    29. 29)
      • 8. He, J., Norwood, R.A., Brandt-Pearce, M., et al: ‘A survey on recent advances in optical communications', Comput. Electr. Eng., 2014, 40, (1), pp. 216240.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2016.1320
Loading

Related content

content/journals/10.1049/iet-com.2016.1320
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address