Cross-layer source-channel control for future wireless multimedia services: energy, latency, and quality investigation

Cross-layer source-channel control for future wireless multimedia services: energy, latency, and quality investigation

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Efficient use of available energy resources for real-time multimedia communication with a quality guarantee is one of the main challenges for future mobile computing systems. To meet the high quality-of-experience (QoE) demand of multimedia services, we propose a novel quality-driven joint source-channel coding (JSCC) scheme with an unequal error protection (UEP) technique that allocates bits by optimising source intra refreshing rates and channel correction coding rates. The key contribution of this work is that the frame importance diversity at the application layer is jointly considered with the error correction techniques and resource constraints at lower layers. For any given bit budget, the JSCC model is capable of allocating adaptive bits between source coding and channel coding among media streams. The source-aware UEP scheme is capable of dynamically allocating the error correction bits among frames, achieving the maximum overall QoE. Simulation results demonstrated that significant improvement in multimedia quality and remarkable energy/time conservation can be achieved by deploying the proposed group-based JSCC strategy, although the complexity is limited.


    1. 1)
      • 1. Ma, T., Hempel, M., Peng, D., et al.: ‘A survey of energy-efficient compression and communication techniques for multimedia in resource constrained systems’, IEEE Commun. Surv. Tutor., 2013, 15, (3), pp. 963972.
    2. 2)
      • 2. Oyman, O., Foerster, J., joo Tcha, Y., et al.: ‘Toward enhanced mobile video services over WiMAX and LTE [WiMAX/LTE update]’, IEEE Commun. Mag., 2010, 48, (8), pp. 6876.
    3. 3)
      • 3. Cisco, Cisco Visual Networking Index: ‘Global mobile data traffic forecast update, 2013–2018’. Cisco White Paper, 5 February 2014.
    4. 4)
      • 4. Liu, L., Yi, Y., Chamberland, J.-F., et al.: ‘Energy-efficient power allocation for delay-sensitive multimedia traffic over wireless systems’, IEEE Trans. Veh. Technol., 2014, 63, (5), pp. 20382047.
    5. 5)
      • 5. Yigitel, M.A., Incel, O.D., Ersoy, C.: ‘QoS-aware MAC protocols for wireless sensor networks: a survey’, Comput. Netw., 2011, 55, (8), pp. 19822004.
    6. 6)
      • 6. Nejati, N., Yousefi'zadeh, H., Jafarkhani, H.: ‘Distortion optimal transmission of multi-layered FGS video over wireless channels’, IEEE J. Sel. Areas Commun., 2010, 28, (3), pp. 510519.
    7. 7)
      • 7. Zhai, F., Eisenberg, Y., Pappas, T.N., et al.: ‘Rate-distortion optimized hybrid error control for real-time packetized video transmission’, IEEE Trans. Image Process., 2006, 15, (1), pp. 4053.
    8. 8)
      • 8. Akyildiz, I.F., Melodia, T., Chowdury, K.R.: ‘Wireless multimedia sensor networks: a survey’, IEEE Wirel. Commun., 2007, 14, (6), pp. 3239.
    9. 9)
      • 9. Wu, Y., Kumar, S., Hu, F., et al.: ‘Cross-layer forward error correction scheme using Raptor and RCPC codes for prioritized video transmission over wireless channels’, IEEE Trans. Circuits Syst. Video Technol., 2014, 24, (6), pp. 10471060.
    10. 10)
      • 10. Vosoughi, A., Cosman, P., Milstein, L.: ‘Joint source-channel coding and unequal error protection for video plus depth’, IEEE Signal Process. Lett., 2015, 22, (1), pp. 3134.
    11. 11)
      • 11. Chen, Q., Wang, L., Hong, S., et al.: ‘Performance improvement of jscc scheme through redesigning channel code’, IEEE Commun. Lett., 2016, 20, (6), pp. 10881091.
    12. 12)
      • 12. Zhai, F., Katsaggelos, A.: ‘Joint source-channel video transmission’, Synth. Lect. Image, Video, and Multimedia Proces., 2007, 3, (1), pp. 1136.
    13. 13)
      • 13. Maani, E., Katsaggelos, A.K.: ‘Unequal error protection for robust streaming of scalable video over packet lossy networks’, IEEE Trans. Circuits Syst. Video Technol., 2010, 20, (3), pp. 407416.
    14. 14)
      • 14. Chen, Z., Wu, D.: ‘Rate-distortion optimized cross-layer rate control in wireless video communication’, IEEE Trans. Circuits Syst. Video Technol., 2012, 22, (3), pp. 352365.
    15. 15)
      • 15. Zhang, Y., Gao, W., Lu, Y., et al.: ‘Joint source-channel rate-distortion optimization for H. 264 video coding over error-prone networks’, IEEE Trans. Multimedia, 2007, 9, (3), pp. 445454.
    16. 16)
      • 16. van der Schaar, M., Turaga, D.S., Wong, R.: ‘Classification-based system for cross-layer optimized wireless video transmission’, IEEE Trans. Multimedia, 2006, 8, (5), pp. 10821095.
    17. 17)
      • 17. Wang, W., Peng, D., Wang, H., et al.: ‘Cross-layer multirate interaction with distributed source coding in wireless sensor networks’, IEEE Trans. Wirel. Commun., 2009, 8, (2), pp. 787795.
    18. 18)
      • 18. Wang, W., Hempel, M., Peng, D., et al.: ‘On energy efficient encryption for video streaming in wireless sensor networks’, IEEE Trans. Multimedia, 2010, 12, (5), pp. 417426.
    19. 19)
      • 19. Luo, H., Ci, S., Wu, D., et al.: ‘Quality-driven cross-layer optimized video delivery over LTE’, IEEE Commun. Mag., 2010, 48, (2), pp. 102109.
    20. 20)
      • 20. Maani, E., Katsaggelos, A.: ‘Unequal error protection for robust streaming of scalable video over packet lossy networks’, IEEE Trans. Circuits Syst. Video Technol., 2010, 20, (3), pp. 407416.
    21. 21)
      • 21. Kambhatla, K.K., Paluri, S., Matyjas, J.D., et al.: ‘Cross-layer prioritized H. 264 video packetization and error protection over noisy channels’, Multimedia Tools Appl., 2016, 75, (6), pp. 32353257.
    22. 22)
      • 22. Thomos, N., Argyropoulos, S., Boulgouris, N.V., et al.: ‘Robust transmission of H. 264/AVC streams using adaptive group slicing and unequal error protection’, EURASIP J. Appl. Signal Process., 2006, 2006, pp. 120120.
    23. 23)
      • 23. Reed, I.S., Solomon, G.: ‘Polynomial codes over certain finite fields’, J. Soc. Ind. Appl. Math., 1960, 8, (2), pp. 300304.
    24. 24)
      • 24. Wang, Q., Wang, W., Jin, S., et al.: ‘Time-distortion optimized forward error correction for delay-sensitive wireless multimedia transmission’. Proc. IEEE GLOBECOM, 2013, pp. 16261631.
    25. 25)
      • 25. Wang, Q., Wang, W., Jin, S., et al.: ‘Quality-optimized joint source selection and power control for wireless multimedia D2D communication using Stackelberg game’, IEEE Trans. Veh. Technol., 2015, 64, (8), pp. 37553769.
    26. 26)
      • 26. Suehring, K.: ‘H.264/AVC JM reference software (2015)’. Available at accessed 25 May 2015.

Related content

This is a required field
Please enter a valid email address