Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Interference and throughput aware resource allocation for multi-class D2D in 5G networks

This study examines subcarrier and optimal power allocation in orthogonal frequency division multiple access based 5G device-to-device (D2D) networks. To improve spectrum efficiency, D2D users share same subcarriers with the legacy users using underlay approach. In this approach, it is challenging to design an efficient subcarrier and power allocation method for D2D networks which guarantees the quality of service requirements of legacy users. Therefore, the key constraint is to check the interference condition among D2D and legacy users while allocating the same resources to D2D users. In this study, the authors propose a throughput efficient subcarrier allocation (TESA) and geometric water-filling based optimal power allocation (GWFOPA) method for multi-class cellular D2D systems. First, the TESA method selects subcarriers and allocates power equally for D2D users according to their service classes while maintaining interference and data rate constraints. Then, the GWFOPA method is applied to optimise power in a computationally effective way. The objective of TESA and GWFOPA method is to maximise the data rate of each class while maintaining interference constraint and fairness among the D2D users. Finally, the authors present simulation results to evaluate performance of TESA and GWFOPA in terms of throughput, user data rate, and fairness.

References

    1. 1)
      • 14. Monowar Hasan, E.H., Kim, D.I.: ‘Resource allocation under channel uncertainties for relay-aided device-to-device communication underlaying LTE-A cellular networks’, IEEE Trans. Wirel. Commun., 2014, 13, pp. 23222338.
    2. 2)
      • 5. Sun, S., Shin, Y.: ‘Resource allocation for D2D communication using particle swarm optimization in LTE networks’. IEEE Int. Conf. on Information and Communication Technology Convergence (ICTC), October 2014, pp. 371376.
    3. 3)
      • 3. Jo, M., Maksymyuk, T., Strykhalyuk, B., et al: ‘Device-to-device-based heterogeneous radio access network architecture for mobile cloud computing’, IEEE Wirel. Commun., 2015, 22, pp. 5058.
    4. 4)
      • 21. Du, Q., Song, H., Xu, Q., et al: ‘Interference-controlled D2D routing aided by knowledge extraction at cellular infrastructure towards ubiquitous cps’, Pers. Ubiquitous Comput., 2015, 19, (7), pp. 10331043.
    5. 5)
      • 25. Esmat, H.H., Elmesalawy, M.M., Ibrahim, I.I.: ‘Adaptive resource sharing algorithm for D2D communications underlaying cellular networks’, IEEE Commun. Lett., 2016, 20, pp. 530533.
    6. 6)
      • 4. Jiang, Y., Liu, Q., Zheng, F., et al: ‘Energy efficient joint resource allocation and power control for D2D communications’, IEEE Trans. Veh. Technol., 2015, 65, pp. 61196127.
    7. 7)
      • 11. 3GPP TR 36.843: ‘Study on LTE device to device proximity services; radio aspects’, March 2014.
    8. 8)
      • 22. Min, S.H., Lee, J., Hoang, D.: ‘Capacity enhancement using an interference limited area for device-to-device uplink underlaying cellular networks’, IEEE Trans. Commun., 2011, 10, pp. 39954000.
    9. 9)
      • 16. Wang, R., Zhang, J., Song, S., et al: ‘Qos-aware joint mode selection and channel assignment for D2D communications’, May 2016, pp. 16.
    10. 10)
      • 8. Kai, Y., Zhu, H.: ‘Resource allocation for multiple-pair D2D communications in cellular networks’. IEEE Int. Conf. on Communications (ICC), June 2015, pp. 29552960.
    11. 11)
      • 10. Hoang, T.D., Liu, Q., Zheng, F., et al: ‘Joint subchannel and power allocation for D2D communication in cellular networks’. IEEE WCNC, April 2014, pp. 13381343.
    12. 12)
      • 24. Mumtaz, S., Huq, K.M.S., Radwan, A., et al: ‘Energy efficient interference-aware resource allocation in lte-D2D communication’. IEEE Int. Conf. on Communication, June 2014, pp. 282287.
    13. 13)
      • 18. Mohsen Nader Tehrani, M.U., Yanikomeroglu, H.: ‘Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions’, IEEE Commun. Mag., 2014, 52, pp. 8692.
    14. 14)
      • 1. Dopper, K., Rinne, M., Wijting, C., et al: ‘Device-to-device communication as an underlay to LTE-advanced networks’, IEEE Commun. Mag., 2009, 47, pp. 4249.
    15. 15)
      • 13. Militano, L., Orsino, A., Araniti, G., et al: ‘Efficient spectrum management exploiting D2D communication in 5G systems’, August 2015.
    16. 16)
      • 19. Han, T., Yin, R., Xu, Y., et al: ‘Uplink channel reusing selection optimization for device-to-device communication underlaying cellular networks’. IEEE 23rd Int. Symp. on Personal Indoor and Mobile Radio Communications (PIMRC), September 2012, pp. 559564.
    17. 17)
      • 2. Li, Z., Moisio, M., Uusitalo, M.A., et al: ‘Overview on initial metis D2D concept’, 2014, pp. 203208.
    18. 18)
      • 17. Sanchez Moya, F., Venkatasubramanian, V., Marsch, P., et al: ‘D2d mode selection and resource allocation with flexible UL/DL TDD for 5G deployments’, 2015, pp. 657663.
    19. 19)
      • 7. Hasan, M., Hossain, E.: ‘Resource allocation for network-integrated device-to-device communications using smart relays’ (IEEE Globecom, 2013), pp. 591596.
    20. 20)
      • 20. Du, Q., Ren, P., Song, H., et al: ‘On P2P-share oriented routing over interference-constrained D2D networks’, December 2014, pp. 138143.
    21. 21)
      • 23. Deng, J., Dowhuszko, A.A., Freij, R., et al: ‘Relay selection and resource allocation for D2D-relaying under uplink cellular power control’, December 2015.
    22. 22)
      • 15. Liu, T., Wang, G.: ‘Resource allocation for device-to-device communications as an underlay using nash bargaining game theory’, 2015, pp. 366371.
    23. 23)
      • 6. Zhao, Y., Li, Y., Chen, X., et al: ‘Joint optimization of resource allocation and relay selection for network coding aided device-to-device communications’, IEEE Commun. Lett., 2015, 19, pp. 807810.
    24. 24)
      • 9. Su, L., Ji, Y., Wang, P., et al: ‘Resource allocation using particle swarm optimization for D2D communication underlay of cellular networks’. IEEE Wireless Communications and Networking Conf. (WCNC), April 2013, pp. 129133.
    25. 25)
      • 12. Feng, D., Lu, L., Yuan-Wu, Y., et al: ‘Device-to-device communications underlaying cellular networks’, IEEE Trans. Commun., 2013, 61, pp. 35413551.
    26. 26)
      • 26. Zhang, J., Yang, X., Yao, Q., et al: ‘Cooperative energy efficiency modeling and performance analysis in co-channel interference cellular networks’, Comput. J. , 2013, 56, pp. 10101019.
    27. 27)
      • 27. He, P., Zhao, L., Zhou, S., et al: ‘Water-filling: a geometric approach and its application to solve generalized radio resource allocation problems’, IEEE Trans. Wirel. Commun., 2013, 12, (7), pp. 36373647.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2016.1166
Loading

Related content

content/journals/10.1049/iet-com.2016.1166
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address