Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Compressive sensing-based coprime array direction-of-arrival estimation

A coprime array has a larger array aperture as well as increased degrees-of-freedom (DOFs), compared with a uniform linear array with the same number of physical sensors. Therefore, in a practical wireless communication system, it is capable to provide desirable performance with a low-computational complexity. In this study, the authors focus on the problem of efficient direction-of-arrival (DOA) estimation, where a coprime array is incorporated with the idea of compressive sensing. Specifically, the authors first generate a random compressive sensing kernel to compress the received signals of coprime array to lower-dimensional measurements, which can be viewed as a sketch of the original received signals. The compressed measurements are subsequently utilised to perform high-resolution DOA estimation, where the large array aperture of the coprime array is maintained. Moreover, the authors also utilise the derived equivalent virtual array signal of the compressed measurements for DOA estimation, where the superiority of coprime array in achieving a higher number of DOFs can be retained. Theoretical analyses and simulation results verify the effectiveness of the proposed methods in terms of computational complexity, resolution, and the number of DOFs.

References

    1. 1)
      • 11. Zhou, C., Gu, Y., Song, W.-Z., et al: ‘Robust adaptive beamforming based on DOA support using decomposed coprime subarrays’. Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), Shanghai, China, 2016, pp. 29862990.
    2. 2)
      • 30. Gu, Y., Goodman, N.A., Ashok, A.: ‘Radar target profiling and recognition based on TSI-optimized compressive sensing kernel’, IEEE Trans. Signal Process., 2014, 62, (12), pp. 31943207.
    3. 3)
      • 28. Ding, W., Yang, F., Liu, S., et al: ‘Structured compressive sensing-based non-orthogonal time-domain training channel state information acquisition for multiple input multiple output systems’, IET Commun., 2016, 10, (6), pp. 685690.
    4. 4)
      • 27. Wu, X., Zhu, W., Yan, J.: ‘Direction of arrival estimation for off-grid signals based on sparse bayesian learning’, IEEE Sensors J., 2016, 16, (7), pp. 20042016.
    5. 5)
      • 19. Zhang, Y.D., Amin, M.G., Himed, B.: ‘Sparsity-based DOA estimation using co-prime arrays’. Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), Vancouver, Canada, 2013, pp. 39673971.
    6. 6)
      • 31. Tibshirani, R.: ‘Regression shrinkage and selection via the LASSO’, J. Royal Stat. Soc. B, 1996, 58, (1), pp. 267288.
    7. 7)
      • 32. Chen, S.S., Donoho, D.L., Saunders, M.A.: ‘Atomic decomposition by basis pursuit’, SIAM J. Sci. Comput., 1998, 20, (1), pp. 3361.
    8. 8)
      • 34. Wang, Y., Leus, G., Pandharipande, A.: ‘Direction estimation using compressive sampling array processing’. Proc. IEEE/SP Workshop Statist. Signal Process., Cardiff, UK, 2009, pp. 626629.
    9. 9)
      • 17. Han, K., Nehorai, A.: ‘Wideband Gaussian source processing using a linear nested array’, IEEE Signal Process. Lett., 2013, 20, (11), pp. 11101113.
    10. 10)
      • 1. Van Trees, H.L.: ‘Detection, estimation, and modulation theory, Part IV: optimum array processing’ (Wiley, New York, 2002).
    11. 11)
      • 12. Weng, Z., Djurić, P.M.: ‘A search-free DOA estimation algorithm for coprime arrays’, Digit. Signal Process., 2014, 24, pp. 2733.
    12. 12)
      • 23. Tan, Z., Nehorai, A.: ‘Sparse direction of arrival estimation using co-prime arrays with off-grid targets’, IEEE Signal Process. Lett., 2014, 21, (1), pp. 2629.
    13. 13)
      • 13. Zhou, C., Shi, Z., Gu, Y., et al: ‘DECOM: DOA estimation with combined MUSIC for coprime array’. Proc. Int. Conf. Wireless Communication and Signal Processing (WCSP), Hangzhou, China, 2013, pp. 15.
    14. 14)
      • 26. Gu, Y., Goodman, N.A., Hong, S., et al: ‘Robust adaptive beamforming based on interference covariance matrix sparse reconstruction’, Signal Process., 2014, 96, pp. 376381.
    15. 15)
      • 3. Hu, B., Hua, C., Chen, C., et al: ‘MUBFP: multiuser beamforming and partitioning for sum capacity maximization in MIMO systems’, IEEE Trans. Veh. Technol., 2017, 66, (1), pp. 233245.
    16. 16)
      • 21. Tan, Z., Eldar, Y.C., Nehorai, A.: ‘Direction of arrival estimation using co-prime arrays: A super resolution viewpoint’, IEEE Trans. Signal Process., 2014, 62, (21), pp. 55655576.
    17. 17)
      • 4. Tang, J., Wen, H., Hu, L., et al: ‘Associating MIMO beamforming with security codes to achieve unconditional communication security’, IET Commun., 2016, 10, (12), pp. 15221531.
    18. 18)
      • 7. Bloom, G.S., Golomb, S.W.: ‘Applications of numbered undirected graphs’, Proc. IEEE, 1977, 65, (4), pp. 562570.
    19. 19)
      • 20. Zhou, C., Shi, Z., Gu, Y.: ‘Coprime array adaptive beamforming with enhanced degrees-of-freedom capability’. Proc. IEEE Radar Conf., Seattle, WA, USA, 2017, pp. 14.
    20. 20)
      • 16. Qin, S., Zhang, Y.D., Amin, M.G.: ‘Generalized coprime array configurations for direction-of-arrival estimation’, IEEE Trans. Signal Process., 2015, 63, (6), pp. 13771390.
    21. 21)
      • 15. Pal, P., Vaidyanathan, P.P.: ‘Coprime sampling and the MUSIC algorithm’. Proc. IEEE Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop, Sedona, AZ, USA, 2011, pp. 289294.
    22. 22)
      • 33. Grant, M., Boyd, S.: ‘CVX: Matlab software for disciplined convex programming, version 2.1’. Available at http://cvxr.com/cvx, June 2015.
    23. 23)
      • 29. Gu, Y., Zhang, Y.D., Goodman, N.A.: ‘Optimized compressive sensing-based direction-of-arrival estimation in massive MIMO’. Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), New Orleans, LA, USA, 2017.
    24. 24)
      • 24. Donoho, D.L.: ‘Compressed sensing’, IEEE Trans. Inf. Theory, 2006, 52, (4), pp. 12891306.
    25. 25)
      • 6. Moffet, A.T.: ‘Minimum-redundancy linear arrays’, IEEE Trans. Antennas Propag., 1968, 16, (2), pp. 172175.
    26. 26)
      • 10. Gu, Y., Zhou, C., Goodman, N.A., et al: ‘Coprime array adaptive beamforming based on compressive sensing virtual array signal’. Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), Shanghai, China, 2016, pp. 29812985.
    27. 27)
      • 8. Pal, P., Vaidyanathan, P.P.: ‘Nested arrays: A novel approach to array processing with enhanced degrees of freedom’, IEEE Trans. Signal Process., 2010, 58, (8), pp. 41674181.
    28. 28)
      • 25. Yu, W., Chen, C., He, T., et al: ‘Adaptive compressive engine for real-time electrocardiogram monitoring under unreliable wireless channels’, IET Commun., 2016, 10, (6), pp. 607615.
    29. 29)
      • 5. Shi, Q., Liu, L., Xu, W., et al: ‘Joint transmit beamforming and receive power splitting for MISO SWIPT systems’, IEEE Trans. Wirel. Commun., 2014, 13, (6), pp. 32693280.
    30. 30)
      • 22. Pal, P., Vaidyanathan, P.P.: ‘A grid-less approach to underdetermined direction of arrival estimation via low rank matrix denoising’, IEEE Signal Process. Lett., 2014, 21, (6), pp. 737741.
    31. 31)
      • 18. Shi, Z., Zhou, C., Gu, Y., et al: ‘Source estimation using coprime array: A sparse reconstruction perspective’, IEEE Sensors J., 2017, 17, (3), pp. 755765.
    32. 32)
      • 2. Ge, X., Tu, S., Mao, G., et al: ‘5G Ultra-dense cellular networks’, IEEE Wirel. Commun., 2016, 23, (1), pp. 7279.
    33. 33)
      • 14. Zhou, C., Shi, Z., Gu, Y., et al: ‘DOA estimation by covariance matrix sparse reconstruction of coprime array’. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Brisbane, Australia, 2015, pp. 23692373.
    34. 34)
      • 9. Vaidyanathan, P.P., Pal, P.: ‘Sparse sensing with co-prime samplers and arrays’, IEEE Trans. Signal Process., 2011, 59, (2), pp. 573586.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2016.1048
Loading

Related content

content/journals/10.1049/iet-com.2016.1048
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address