Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Compressive sensing-based coprime array direction-of-arrival estimation

Loading full text...

Full text loading...

/deliver/fulltext/iet-com/11/11/IET-COM.2016.1048.html;jsessionid=a9mq1t8p8kedo.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-com.2016.1048&mimeType=html&fmt=ahah

References

    1. 1)
      • 11. Zhou, C., Gu, Y., Song, W.-Z., et al: ‘Robust adaptive beamforming based on DOA support using decomposed coprime subarrays’. Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), Shanghai, China, 2016, pp. 29862990.
    2. 2)
      • 30. Gu, Y., Goodman, N.A., Ashok, A.: ‘Radar target profiling and recognition based on TSI-optimized compressive sensing kernel’, IEEE Trans. Signal Process., 2014, 62, (12), pp. 31943207.
    3. 3)
      • 28. Ding, W., Yang, F., Liu, S., et al: ‘Structured compressive sensing-based non-orthogonal time-domain training channel state information acquisition for multiple input multiple output systems’, IET Commun., 2016, 10, (6), pp. 685690.
    4. 4)
      • 27. Wu, X., Zhu, W., Yan, J.: ‘Direction of arrival estimation for off-grid signals based on sparse bayesian learning’, IEEE Sensors J., 2016, 16, (7), pp. 20042016.
    5. 5)
      • 19. Zhang, Y.D., Amin, M.G., Himed, B.: ‘Sparsity-based DOA estimation using co-prime arrays’. Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), Vancouver, Canada, 2013, pp. 39673971.
    6. 6)
      • 31. Tibshirani, R.: ‘Regression shrinkage and selection via the LASSO’, J. Royal Stat. Soc. B, 1996, 58, (1), pp. 267288.
    7. 7)
      • 32. Chen, S.S., Donoho, D.L., Saunders, M.A.: ‘Atomic decomposition by basis pursuit’, SIAM J. Sci. Comput., 1998, 20, (1), pp. 3361.
    8. 8)
      • 34. Wang, Y., Leus, G., Pandharipande, A.: ‘Direction estimation using compressive sampling array processing’. Proc. IEEE/SP Workshop Statist. Signal Process., Cardiff, UK, 2009, pp. 626629.
    9. 9)
      • 17. Han, K., Nehorai, A.: ‘Wideband Gaussian source processing using a linear nested array’, IEEE Signal Process. Lett., 2013, 20, (11), pp. 11101113.
    10. 10)
      • 1. Van Trees, H.L.: ‘Detection, estimation, and modulation theory, Part IV: optimum array processing’ (Wiley, New York, 2002).
    11. 11)
      • 12. Weng, Z., Djurić, P.M.: ‘A search-free DOA estimation algorithm for coprime arrays’, Digit. Signal Process., 2014, 24, pp. 2733.
    12. 12)
      • 23. Tan, Z., Nehorai, A.: ‘Sparse direction of arrival estimation using co-prime arrays with off-grid targets’, IEEE Signal Process. Lett., 2014, 21, (1), pp. 2629.
    13. 13)
      • 13. Zhou, C., Shi, Z., Gu, Y., et al: ‘DECOM: DOA estimation with combined MUSIC for coprime array’. Proc. Int. Conf. Wireless Communication and Signal Processing (WCSP), Hangzhou, China, 2013, pp. 15.
    14. 14)
      • 26. Gu, Y., Goodman, N.A., Hong, S., et al: ‘Robust adaptive beamforming based on interference covariance matrix sparse reconstruction’, Signal Process., 2014, 96, pp. 376381.
    15. 15)
      • 3. Hu, B., Hua, C., Chen, C., et al: ‘MUBFP: multiuser beamforming and partitioning for sum capacity maximization in MIMO systems’, IEEE Trans. Veh. Technol., 2017, 66, (1), pp. 233245.
    16. 16)
      • 21. Tan, Z., Eldar, Y.C., Nehorai, A.: ‘Direction of arrival estimation using co-prime arrays: A super resolution viewpoint’, IEEE Trans. Signal Process., 2014, 62, (21), pp. 55655576.
    17. 17)
      • 4. Tang, J., Wen, H., Hu, L., et al: ‘Associating MIMO beamforming with security codes to achieve unconditional communication security’, IET Commun., 2016, 10, (12), pp. 15221531.
    18. 18)
      • 7. Bloom, G.S., Golomb, S.W.: ‘Applications of numbered undirected graphs’, Proc. IEEE, 1977, 65, (4), pp. 562570.
    19. 19)
      • 20. Zhou, C., Shi, Z., Gu, Y.: ‘Coprime array adaptive beamforming with enhanced degrees-of-freedom capability’. Proc. IEEE Radar Conf., Seattle, WA, USA, 2017, pp. 14.
    20. 20)
      • 16. Qin, S., Zhang, Y.D., Amin, M.G.: ‘Generalized coprime array configurations for direction-of-arrival estimation’, IEEE Trans. Signal Process., 2015, 63, (6), pp. 13771390.
    21. 21)
      • 15. Pal, P., Vaidyanathan, P.P.: ‘Coprime sampling and the MUSIC algorithm’. Proc. IEEE Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop, Sedona, AZ, USA, 2011, pp. 289294.
    22. 22)
      • 33. Grant, M., Boyd, S.: ‘CVX: Matlab software for disciplined convex programming, version 2.1’. Available at http://cvxr.com/cvx, June 2015.
    23. 23)
      • 29. Gu, Y., Zhang, Y.D., Goodman, N.A.: ‘Optimized compressive sensing-based direction-of-arrival estimation in massive MIMO’. Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), New Orleans, LA, USA, 2017.
    24. 24)
      • 24. Donoho, D.L.: ‘Compressed sensing’, IEEE Trans. Inf. Theory, 2006, 52, (4), pp. 12891306.
    25. 25)
      • 6. Moffet, A.T.: ‘Minimum-redundancy linear arrays’, IEEE Trans. Antennas Propag., 1968, 16, (2), pp. 172175.
    26. 26)
      • 10. Gu, Y., Zhou, C., Goodman, N.A., et al: ‘Coprime array adaptive beamforming based on compressive sensing virtual array signal’. Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), Shanghai, China, 2016, pp. 29812985.
    27. 27)
      • 8. Pal, P., Vaidyanathan, P.P.: ‘Nested arrays: A novel approach to array processing with enhanced degrees of freedom’, IEEE Trans. Signal Process., 2010, 58, (8), pp. 41674181.
    28. 28)
      • 25. Yu, W., Chen, C., He, T., et al: ‘Adaptive compressive engine for real-time electrocardiogram monitoring under unreliable wireless channels’, IET Commun., 2016, 10, (6), pp. 607615.
    29. 29)
      • 5. Shi, Q., Liu, L., Xu, W., et al: ‘Joint transmit beamforming and receive power splitting for MISO SWIPT systems’, IEEE Trans. Wirel. Commun., 2014, 13, (6), pp. 32693280.
    30. 30)
      • 22. Pal, P., Vaidyanathan, P.P.: ‘A grid-less approach to underdetermined direction of arrival estimation via low rank matrix denoising’, IEEE Signal Process. Lett., 2014, 21, (6), pp. 737741.
    31. 31)
      • 18. Shi, Z., Zhou, C., Gu, Y., et al: ‘Source estimation using coprime array: A sparse reconstruction perspective’, IEEE Sensors J., 2017, 17, (3), pp. 755765.
    32. 32)
      • 2. Ge, X., Tu, S., Mao, G., et al: ‘5G Ultra-dense cellular networks’, IEEE Wirel. Commun., 2016, 23, (1), pp. 7279.
    33. 33)
      • 14. Zhou, C., Shi, Z., Gu, Y., et al: ‘DOA estimation by covariance matrix sparse reconstruction of coprime array’. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Brisbane, Australia, 2015, pp. 23692373.
    34. 34)
      • 9. Vaidyanathan, P.P., Pal, P.: ‘Sparse sensing with co-prime samplers and arrays’, IEEE Trans. Signal Process., 2011, 59, (2), pp. 573586.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2016.1048
Loading

Related content

content/journals/10.1049/iet-com.2016.1048
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address