Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Secrecy performance of threshold-based decode-and-forward cooperative cognitive radio network

This study evaluates the intercept and outage probability of a decode-and-forward (DF) underlay cognitive radio network. The secondary users are subject to interference limitations from the primary network, with an eavesdropper tapping the second hop of cognitive network, when all the links undergo Rayleigh fading. For this threshold-based system, without assuming that the DF relays can always decode the message correctly, here the authors consider that only a set of relays whose SNR satisfies a predetermined threshold can decode the message successfully. The authors have obtained asymptotic analysis for both cases, when average SNRs of secondary source-relay and relay-destination links are balanced or unbalanced. The authors have shown that the desired secrecy rate, predetermined threshold, eavesdropper channel quality and interference power limitations significantly affects the secrecy performance of the cognitive radio system. They have investigated the outage and intercept probability of relay selection scheme, when either full instantaneous channel state information or statistical channel state information of all the links is available. They have shown that the optimal relay selection improves the performance of the multi-relay cognitive system, when the number of relays is increased.

References

    1. 1)
      • 14. Ding, H., Ge, J., da Costa, D.B., et al: ‘Asymptotic analysis of cooperative diversity systems with relay selection in a spectrum-sharing scenario’, IEEE Trans. Veh. Technol., 2011, 60, (2), pp. 457472.
    2. 2)
      • 10. Yang, J., Chen, L., Ding, J., et al: ‘Intercept outage probability analysis of cognitive relay networks in presence of eavesdropping attack’. Proc. IEEE 21st Asia-Pacific Conf. on Communications (APCC), 2015, pp. 304308.
    3. 3)
      • 17. Sagong, S., Lee, J., Hong, D.: ‘Capacity of reactive DF scheme in cognitive relay networks’, IEEE Trans. Wirel. Commun., 2011, 10, (10), pp. 31333138.
    4. 4)
      • 12. Yang, W., Xu, X., Cai, Y., et al: ‘Secrecy outage analysis for cooperative DF underlay CRNs with outdated CSI’. Proc. IEEE Wireless Communications and Networking Conf. (WCNC), 2014, pp. 416421.
    5. 5)
      • 32. Liu, Y., Wang, L., Duy, T.T., et al: ‘Relay selection for security enhancement in cognitive relay networks’, IEEE Wirel. Commun. Lett., 2015, 4, (1), pp. 4649.
    6. 6)
      • 23. Krikidis, I.: ‘Opportunistic relay selection for cooperative networks with secrecy constraints’, IET Commun., 2010, 4, (15), pp. 17871791.
    7. 7)
      • 25. Al-Qahtani, F.S., Zhong, C., Alnuweiri, H.M.: ‘Opportunistic relay selection for secrecy enhancement in cooperative networks’, IEEE Trans. Commun., 2015, 63, (5), pp. 17561770.
    8. 8)
      • 1. Al-jamali, M., Al-Nahari, A., AlKhawlani, M.M.: ‘Relay selection scheme for improving the physical layer security in cognitive radio networks’. Proc. IEEE 23th Signal Processing and Communications Applications Conf. (SIU), 2015, pp. 495498.
    9. 9)
      • 31. Lu, T., Liu, P., Panwar, S.: ‘Shining a light into the darkness: How cooperative relay communication mitigates correlated shadow fading’. Proc. IEEE 81st Vehicular Technology Conf. (VTC Spring), 2015, pp. 17.
    10. 10)
      • 30. Mietzner, J., Lampe, L., Schober, R.: ‘Distributed transmit power allocation for multihop cognitive-radio systems’, IEEE Trans. Wirel. Commun., 2009, 8, (10), pp. 51875201.
    11. 11)
      • 22. Wang, L., Kim, K.J., Duong, T.Q., et al: ‘Security enhancement of cooperative single carrier systems’, IEEE Trans. Inf. Forensics Sec., 2015, 10, (1), pp. 90103.
    12. 12)
      • 5. Zou, Y., Wang, X., Shen, W.: ‘Physical-layer security with multiuser scheduling in cognitive radio networks’, IEEE Trans. Commun., 2013, 61, (12), pp. 51035113.
    13. 13)
      • 16. Zhong, C., Ratnarajah, T., Wong, K.-K.: ‘Outage analysis of decode-and-forward cognitive dual-hop systems with the interference constraint in Nakagami- m fading channels’, IEEE Trans. Veh. Technol., 2011, 60, (6), pp. 28752879.
    14. 14)
      • 9. Sakran, H., Shokair, M., Nasr, O., et al: ‘Proposed relay selection scheme for physical layer security in cognitive radio networks’, IET Commun., 2012, 6, (16), pp. 26762687.
    15. 15)
      • 7. Zou, Y., Champagne, B., Zhu, W.-P., et al: ‘Relay-selection improves the security-reliability trade-off in cognitive radio systems’, IEEE Trans. Commun., 2015, 63, (1), pp. 215228.
    16. 16)
      • 27. Proakis, J.: ‘Digital communications’ (McGraw-Hill, New York, 2001, 4th edn.).
    17. 17)
      • 20. Kundu, C., Ghose, S., Bose, R.: ‘Secrecy outage of dual-hop regenerative multi-relay system with relay selection’, IEEE Trans. Wirel. Commun., 2015, 14, (8), pp. 46144625.
    18. 18)
      • 11. Zou, Y., Wang, X., Shen, W.: ‘Optimal relay selection for physical layer security in cooperative wireless networks’, IEEE J. Sel. Areas Commun., 2013, 31, (10), pp. 20992111.
    19. 19)
      • 24. Ghose, S., Kundu, C., Bose, R.: ‘Secrecy performance of dual-hop decode-and-forward relay system with diversity combining at the eavesdropper’, IET Commun., 2016, 10, (8), pp. 904914.
    20. 20)
      • 8. Gu, Q., Wang, G., Fan, R., et al: ‘Secure performance analysis of cognitive two-way relay system with an eavesdropper’. Proc. IEEE/CIC Int. Conf. on Communications in China (ICCC), 2014, pp. 176180.
    21. 21)
      • 2. Shu, Z., Yang, Y., Qian, Y., et al: ‘Impact of interference on secrecy capacity in a cognitive radio network’. Proc. IEEE Global Telecommunications Conf. (GLOBECOM), 2011, pp. 16.
    22. 22)
      • 4. Do, N.T., An, B.: ‘Secure transmission using decode-and-forward protocol for underlay cognitive radio networks’. Proc. IEEE Seventh Int. Conf. on Ubiquitous and Future Networks (ICUFN), 2015, pp. 914918.
    23. 23)
      • 15. Lee, J., Wang, H., Andrews, J.G., et al: ‘Outage probability of cognitive relay networks with interference constraints’, IEEE Trans. Wirel. Commun., 2011, 10, (2), pp. 390395.
    24. 24)
      • 19. Pan, L., Si, J., Li, Z., et al: ‘Optimal relay selection and power allocation for cognitive two-way relay transmission with primary user's interference’. Proc. IEEE Wireless Communications and Networking Conf. (WCNC), 2013, pp. 17971801.
    25. 25)
      • 13. Sibomana, L., Zepernick, H.-J., Tran, H.: ‘Achievable secrecy capacity in an underlay cognitive radio network’. Proc. IEEE Conf. on Communications and Network Security (CNS), 2014, pp. 16.
    26. 26)
      • 6. Wyner, A.D.: ‘The wire-tap channel’, Bell Syst. Tech. J., 1975, 54, (8), pp. 13551387.
    27. 27)
      • 28. Barros, J., Rodrigues, M.R.: ‘Secrecy capacity of wireless channels’. Proc. IEEE Int. Symp. on Information Theory, 2006, pp. 356360.
    28. 28)
      • 21. Li, D.-J.: ‘Outage probability of cognitive radio networks with relay selection’, IET Commun., 2011, 5, (18), pp. 27302735.
    29. 29)
      • 18. Xu, W., Zhang, J., Zhang, P., et al: ‘Outage probability of decode-and-forward cognitive relay in presence of primary user's interference’, IEEE Commun. Lett., 2012, 16, (8), pp. 12521255.
    30. 30)
      • 29. Tourki, K., Qaraqe, K.A., Alouini, M.-S.: ‘Outage analysis for underlay cognitive networks using incremental regenerative relaying’, IEEE Trans. Veh. Technol., 2013, 62, (2), pp. 721734.
    31. 31)
      • 3. Zou, Y., Li, X., Liang, Y.-C.: ‘Secrecy outage and diversity analysis of cognitive radio systems’, IEEE J. Sel. Areas Commun., 2014, 32, (11), pp. 22222236.
    32. 32)
      • 26. Son, P.N., Kong, H.Y.: ‘The underlay cooperative cognitive network with secure transmission’. Proc. IEEE 27th Biennial Symp. on Communications (QBSC), 2014, pp. 164167.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2016.0917
Loading

Related content

content/journals/10.1049/iet-com.2016.0917
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address