Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Givens rotation-based QR decomposition for MIMO systems

QR decomposition is an essential operation in various detection algorithms utilised in multiple-input multiple-output (MIMO) wireless communication systems. This study presents a Givens rotation-based QR decomposition for MIMO systems. Instead of performing QR decomposition by coordinate rotation digital computer (CORDIC) algorithms, LUT compression algorithms are employed to rapidly evaluate the trigonometric functions. The proposed approach also provides greater accuracy compared with the CORDIC algorithms. QR decomposition is performed by complex Givens rotations cascaded with real Givens rotations. In complex Givens rotations, a modified triangular systolic array is adopted to reduce the delay units of the design and hence, reducing the hardware complexity. The proposed QR decomposition algorithm is implemented in TSMC CMOS technology. It achieves the throughput of 53.5 million QR decompositions per second when operating at 214 MHz.

References

    1. 1)
      • 23. Strollo, A.G.M., Caro, D.D., Petra, N.: ‘A 630 MHz, 76 mW direct digital frequency synthesizer using enhanced ROM compression technique’, IEEE J. Solid-State Circ., 2007, 42, (2), pp. 350360.
    2. 2)
      • 5. Miyaoka, Y., Nagao, Y., Kurosaki, M., et al: ‘Sorted QR decomposition for high-speed MMSE MIMO detection based wireless communication systems’. Proc. IEEE Int. Symp. Circ. Syst., 2012, pp. 28572860.
    3. 3)
      • 20. Shen, C.-A., Eltawil, A.: ‘A radius adaptive K-best decoder with early termination: algorithm and VLSI architecture’, IEEE Trans. Circ. Syst. I, 2010, 57, (9), pp. 24762486.
    4. 4)
      • 22. Hwang, Y.-T., Chen, W.-D.: ‘Design and implementation of a high-throughput fully parallel complex-valued QR factorisation chips’, IET Circ. Dev. Syst., 2011, 5, (5), pp. 424432.
    5. 5)
      • 10. Patel, D., Shabany, M., Gulak, P.G.: ‘A low-complexity high-speed QR decomposition implementation for MIMO receivers’. Proc. IEEE Int. Symp. Circuits and Systems, 2009, pp. 3336.
    6. 6)
      • 1. Dahlman, E., Parkvall, S., Skold, J.: ‘4G LTE/LTE-advanced for mobile broadband’ (Elsevier, 2011).
    7. 7)
      • 11. Huang, Z.-Y., Tsai, P.-Y.: ‘Efficient implementation of QR decomposition for Gigabit MIMO-OFDM systems’, IEEE Trans. Circ. Syst. I, 2011, 58, (10), pp. 25312542.
    8. 8)
      • 28. Burg, A., Borgmann, M., Wenk, M., et al: ‘VLSI implementation of MIMO detection using the sphere decoding algorithm’, IEEE J. Solid-State Circuits, 2005, 40, (7), pp. 15661577.
    9. 9)
      • 21. Maltsev, A., Pestretsov, V., Maslennikov, R., et al: ‘Triangular systolic array with reduced latency for QR-decomposition of complex matrices’. Proc. IEEE Int. Symp. Circuits and Systems.2006, pp. 385388.
    10. 10)
      • 3. Chang, R.C.-H., Lin, C.-H., Lin, K.-H., et al: ‘Iterative QR decomposition architecture using the modified Gram–Schmidt algorithm for MIMO systems’, IEEE Trans. Circ. Syst. I, 2010, 57, (5), pp. 10951102.
    11. 11)
      • 6. Luethi, P., Studer, C., Duetsch, S., et al: ‘Gram-Schmidt-based QR decomposition for MIMO detection: VLSI implementation and comparison’. Proc. IEEE Asian-Pacific Conf. Circuits and Systems, 2008, pp. 830833.
    12. 12)
      • 26. Chen, W.-Y., Guenther, D., Shen, C.-A., et al: ‘Design and implementation of a low-latency, high-throughput sorted QR decomposition circuit for MIMO communications’. Proc. IEEE Asian Pacific Conf. on Circuits and Systems, 2016, pp. 277280.
    13. 13)
      • 12. Lee, M.-W., Yoon, J.-H., Park, J.: ‘High-speed tournament Givens rotation-based QR decomposition architecture for MIMO receiver’. Proc. IEEE Int. Symp. Circuits and Systems, 2012, pp. 2124.
    14. 14)
      • 19. Mondal, S., Eltawil, A., Shen, C.-A., et al: ‘Design and implementation of a sort-free K-best sphere decoder’, IEEE Trans. Very Large Scale Integr. Syst., 2010, 18, (10), pp. 14971501.
    15. 15)
      • 17. Liu, T.-H.: ‘Comparisons of two real-valued MIMO signal models and their associated ZF-SIC detectors over the Rayleigh fading channel’, IEEE Trans. Wirel. Commun., 2013, 12, (12), pp. 60546066.
    16. 16)
      • 9. Shabany, M., Patel, D., Gulak, P.G.: ‘A low-latency low-power QR-decomposition ASIC implementation in 0.13  μm CMOS’, IEEE Trans. Circ. Syst. I, 2013, 60, (2), pp. 327340.
    17. 17)
      • 13. Wang, J.-Y., Lai, R-H., Clien, C.-M., et al: ‘A 2×28×8 sorted QR decomposition processor for MIMO detection’. Proc. IEEE Asian Solid-State Circuits Conf., 2010, pp. 14.
    18. 18)
      • 16. Proakis, J.G.: ‘Digital communications’ (McGraw-Hill, 2001, 4th edn.).
    19. 19)
      • 25. Liu, T.-H., Chiu, C.-N., Liu, P.-Y., et al: ‘Block-wise QR-decomposition for the layered and hybrid Alamouti STBC MIMO systems: algorithms and hardware architectures’, IEEE Trans. Signal Process., 2014, 62, (18), pp. 47374747.
    20. 20)
      • 2. Sesia, S., Toufik, I., Baker, M.: ‘LTE-the UMTS long term evolution: from theory to practice’ (John Wiley & Sons Ltd., 2009).
    21. 21)
      • 7. Singh, C.K., Prasad, S.H., Balsara, P.T.: ‘VLSI’ architecture for matrix inversion using modified Gram–Schmidt based QR decomposition'. Proc. Int. Conf. VLSI Design, 2007, pp. 836841.
    22. 22)
      • 27. Ercegovac, M.D., Lang, T.: ‘Division and square root: digit recurrence algorithms and implementations’ (Kluwer Academic, 1994).
    23. 23)
      • 15. Paulraj, A., Nabar, R., Gore, D.: ‘Introduction to space-time wireless communications’ (Cambridge University Press, 2003).
    24. 24)
      • 24. Caro, D.D., Strollo, A.G.M.: ‘High-performance direct digital frequency synthesizers using piecewise-polynomial approximation’, IEEE Trans. Circ. Syst. I, 2005, 52, (2), pp. 324337.
    25. 25)
      • 18. Shabany, M., Gulak, P.G.: ‘A 675 Mbps, 4×4 64-QAM K-best MIMO detector in 0.13  μm CMOS’, IEEE Trans. Very Large Scale Integr. Syst., 2012, 20, (1), pp. 135147.
    26. 26)
      • 4. Chiu, P.-L., Huang, L.-Z., Chai, L.-W., et al: ‘Interpolation-based QR decomposition and channel estimation processor for MIMO-OFDM system’, IEEE Trans. Circ. Syst. I, 2011, 58, (5), pp. 11291141.
    27. 27)
      • 29. Myllyla, M., Cavallaro, J.R., Juntti, M.: ‘Architecture design and implementation of the metric first list sphere detector algorithm’, IEEE Trans. Very Large Scale Integr. Syst., 2011, 19, (5), pp. 895899.
    28. 28)
      • 8. Salmela, P., Burian, A., Sorokin, H., et al: ‘Complex-valued QR decomposition implementation for MIMO receivers’. Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Process, 2008, pp. 14331436.
    29. 29)
      • 14. Liu, Z.h., Dickson, K., McCanny, V.: ‘Application-specific instruction set processor for SoC implementation of mordern signal processing algorithms’, IEEE Trans. Circ. Syst. I, 2005, 52, (4), pp. 755765.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2016.0789
Loading

Related content

content/journals/10.1049/iet-com.2016.0789
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address