http://iet.metastore.ingenta.com
1887

Merge-and-forward: a cooperative multimedia transmissions protocol using RaptorQ codes

Merge-and-forward: a cooperative multimedia transmissions protocol using RaptorQ codes

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Recently, nodes cooperation has emerged as a popular means for improving the quality of multimedia delivery over fifth-generation cellular networks. However, in the conventional relaying scheme such as amplify-and-forward (AaF), there is a higher probability of duplicate packets at the receiver node which affect the decoding probability and consequently deteriorate the quality of multimedia transmission. In this study, the authors propose a cooperative multimedia transmission protocol based on a novel merge-and-forward relaying and the best relay selection (RS) schemes. Their best RS scheme is based on two important parameters: (i) two-hop link distances and (ii) minimum block error rate value. Moreover, to combat the packet loss for enhanced and reliable video delivery, they adopt application layer forward error correction scheme which is based on the most improved and advanced version of fountain codes (i.e. RaptorQ codes). They evaluate the performance of the proposed scheme under different time-sharing scenarios between the direct and best indirect transmission links in terms of decoding failure probability, decoding overhead, peak signal-to-noise ratio, and mean opinion score. Simulation results show that the proposed scheme outperforms the conventional AaF relaying scheme.

References

    1. 1)
    2. 2)
      • 2. C. V. N. I. Cisco: ‘Global mobile data traffic forecast update, 2013–2018’. White Paper, 2014.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 7. Bouras, C., Kanakis, N., Kokkinos, V., et al: ‘Evaluating RaptorQ FEC over 3GPP multicast services’. 2012 Eighth Int. Wireless Communications and Mobile Computing Conf. IWCMC, IEEE, 2012, pp. 257262.
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 13. Illanko, K., Anpalagan, A.: ‘Cooperative communication using bit-selective adaptive demodulation and raptor codes: the Gaussian relay channel case’. IEEE 69th Vehicular Technology Conf., 2009 VTC Spring 2009, 2009, pp. 17.
    14. 14)
    15. 15)
    16. 16)
      • 16. Jing, Y.: ‘A relay selection scheme for two-way amplify-and-forward relay networks’. Int. Conf. on Wireless Communications & Signal Processing, 2009 WCSP 2009, 2009, pp. 15.
    17. 17)
      • 17. Dong, L., Han, Z., Petropulu, A.P., et al: ‘Amplify-and-forward based cooperation for secure wireless communications’. 2009 IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 2009, pp. 26132616.
    18. 18)
    19. 19)
    20. 20)
      • 20. Laneman, J.N., Wornell, G.W., Tse, D.N.: ‘An efficient protocol for realizing cooperative diversity in wireless networks’. Proc. 2001 IEEE Int. Symp. on Information Theory, 2001, 2001, p. 294.
    21. 21)
    22. 22)
    23. 23)
      • 23. Urosevic, U., Veljovic, Z., Pejanovic-Djurisic, M.: ‘New simple cooperative relaying schemes’. 2014 Int. Symp. on Wireless Personal Multimedia Communications (WPMC), 2014, pp. 340344.
    24. 24)
      • 24. Urosevic, U., Veljovic, Z.: ‘New schemes for increasing code rate of the OFDM based virtual OSTBC’. EUROCON 2015 – Int. Conf. on Computer as a Tool (EUROCON), IEEE, 2015, pp. 16.
    25. 25)
    26. 26)
    27. 27)
      • 27. Zlatanov, N., Schober, R., Lampe, L.: ‘Buffer-aided relaying in a three node network’. 2012 IEEE Int. Symp. on Information Theory Proc. (ISIT), 2012, pp. 781785.
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
      • 32. Marye, Y.W., Zhao, H.-A.: ‘Nearest neighbor relay selection with adaptive modulation for improved throughput and scalability of cooperative wireless networks’. 2014 Fifth Int. Conf. on Intelligent and Advanced Systems (ICIAS), 2014, pp. 15.
    33. 33)
      • 33. Zhao, H.-A., Marye, Y.W.: ‘Adaptive modulation for cooperative wireless communication systems’. 2014 IEEE Int. Conf. on Signal Processing, Communications and Computing (ICSPCC), 2014, pp. 102105.
    34. 34)
      • 34. Marye, Y.W., Zhao, H.-A.: ‘Optimum power allocation based adaptive modulation for cooperative wireless networks’. 2014 14th Int. Symp. on Communications and Information Technologies (ISCIT), 2014, pp. 323326.
    35. 35)
    36. 36)
    37. 37)
      • 37. Marye, Y.W., Sun, R., Zhao, H.-A.: ‘Low outage probability throughput improvement for cooperative wireless networks by utilizing channel state information’. 2013 Int. Symp. on Intelligent Signal Processing and Communications Systems (ISPACS), 2013, pp. 9196.
    38. 38)
      • 38. Marye, Y.W., Zhao, H.-A.: ‘Effective wireless cooperative scheme for increasing throughput with low outage probability’, J. Commun. Comput., 2014, 11, pp. 179186.
    39. 39)
      • 39. Shi, S., Yang, L., Zhu, H.: ‘A novel cooperative transmission scheme based on superposition coding and partial relaying’, Int. J. Commun. Syst., 2014, 27, (11), pp. 28892908.
    40. 40)
      • 40. Gupta, S.H., Singh, R., Sharan, S.: ‘Outage probability analysis and design of routing algorithm for space–time cooperation’, Int. J. Syst. Assurance Eng. Manage., pp. 18.
    41. 41)
      • 41. Hasan, N., Ejaz, W., Atiq, M.K., et al: ‘Energy-efficient error coding and transmission for cognitive wireless body area network’, Int. J. Commun. Syst., 2015.
    42. 42)
    43. 43)
      • 43. Jamali, V., Zlatanov, N., Schober, R.: ‘Adaptive mode selection for bidirectional relay networks-fixed rate transmission’. 2014 IEEE Int. Conf. on Communications (ICC), 2014, pp. 58315837.
    44. 44)
    45. 45)
      • 45. Luby, M., Watson, M., Gasiba, T., et al: ‘Mobile data broadcasting over MBMS tradeoffs in forward error correction’. Proc. Fifth Int. Conf. on Mobile and Ubiquitous Multimedia, 2006, p. 10.
    46. 46)
    47. 47)
      • 47. Alexiou, A., Papazois, A., Bouras, C., et al: ‘Forward error correction for reliable e-MBMS transmissions in LTE networks’ (INTECH Open Access Publisher, 2011).
    48. 48)
      • 48. Bouras, C., Kanakis, N., Kokkinos, V., et al: ‘Al-FEC for streaming services over LTE systems’. 2011 14th Int. Symp. on Wireless Personal Multimedia Communications (WPMC), 2011, pp. 15.
    49. 49)
    50. 50)
      • 50. Bouras, C., Kanakis, N.: ‘Online AL-FEC protection over mobile unicast services’. 2015 European Conf. on Networks and Communications (EuCNC), 2015, pp. 229233.
    51. 51)
      • 51. Ko, D., Koo, K., et al: ‘Reducing the decoding complexity of RaptorQ codes for delay sensitive applications using a simplified and scaled-down matrix’, AEU-Int. J. Electron. Commun., 2016.
    52. 52)
      • 52. Su, Z., Wang, F., Daigle, J., et al: ‘RaptorQP2P: maximize the performance of P2P file distribution with RaptorQ coding’. 2015 IEEE Int. Conf. on Communications (ICC), 2015, pp. 53315336.
    53. 53)
    54. 54)
      • 54. Demir, U., Aktas, O.: ‘Raptor versus Reed Solomon forward error correction codes’. 2006 Int. Symp. on Computer Networks, 2006, pp. 264269.
    55. 55)
      • 55. Mladenov, T., Kim, K., Nooshabadi, S.: ‘Forward error correction with RaptorQ code on embedded systems’. 2011 IEEE 54th Int. Midwest Symp. on Circuits and Systems (MWSCAS), 2011, pp. 14.
    56. 56)
    57. 57)
      • 58. Kamble, V., Kalyanasundaram, S., Ramachandran, V., et al: ‘Efficient resource allocation strategies for multicast/broadcast services in 3GPP long term evolution single frequency networks’. 2009 IEEE Wireless Communications and Networking Conf., 2009, pp. 16.
    58. 58)
      • 59. Wibowo, F.A., Bangun, A.A., Kurniawan, A., et al: ‘Multimedia broadcast multicast service over single frequency network (MBSFN) in LTE based femtocell’. 2011 Int. Conf. on Electrical Engineering and Informatics (ICEEI), 2011, pp. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2016.0146
Loading

Related content

content/journals/10.1049/iet-com.2016.0146
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address