http://iet.metastore.ingenta.com
1887

Blind modulation classification algorithm based on machine learning for spatially correlated MIMO system

Blind modulation classification algorithm based on machine learning for spatially correlated MIMO system

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Spatial correlation is a decisive factor for pragmatic multiple-input multiple-output (MIMO) system, simultaneously bringing about some problems in the received signal modulation identification respect. In this study, the authors focus on blind digital modulation identification in the spatially correlated MIMO system and deliver a robust signal recognition algorithm based on extreme learning machine (ELM) and higher order statistical features for MIMO signal identification without a priori knowledge of the channel and signal parameters. The superiority of ELM lies in random selections of hidden nodes and ascertains output weights analytically, which result in lower computational complexity. Theoretically, this algorithm has a tendency to supply excellent generalisation performance at staggering learning rate. Further, the simulation results indicate that the ELM could reap a perfectly acceptable recognition performance and thus provides a solid ground structure for tackling MIMO modulation challenges in low signal-to-noise ratio.

References

    1. 1)
      • 1. Dobre, O.A., Abdi, A., Bar-Ness, Y., et al: ‘Survey of automatic modulation classification techniques: classical approaches and new trends’, IET Commun., 2007, 1, pp. 137156.
    2. 2)
      • 2. Wu, H.C., Saquib, M., Yun, Z.: ‘Novel automatic modulation classification using cumulant features for communications via multipath channels’, IEEE Trans. Wirel. Commun., 2008, 7, (8), pp. 30983105.
    3. 3)
      • 3. Chang, D.C., Shih, P.K.: ‘Cumulants-based modulation classification technique in multipath fading channels’, IET Commun., 2015, 9, (2), pp. 828835.
    4. 4)
      • 4. Like, E., Chakravarthy, V.D., Ratazzi, P., et al: ‘Signal classification in fading channels using cyclic spectral analysis’, EURASIP J. Wirel. Commun. Netw., 2009, 29, (1), pp. 114.
    5. 5)
      • 5. Liu, J., Luo, Q.: ‘A novel modulation classification algorithm based on Daubechies5 wavelet and fractional Fourier transform in cognitive radio’. Proc. of 2012 IEEE 14th Int. Conf. on Communication Technology (ICCT), 2012, pp. 115120.
    6. 6)
      • 6. Yuan, J., Zhao, Y.Z., Pei, L.Q.: ‘Modulation classification of communication signals’. Proc. of 2004 IEEE Military Communications Conf. (MILCOM), 2004, vol. 3, pp. 14701476.
    7. 7)
      • 7. Dulek, B.: ‘ML modulation classification in presence of unreliable observations’, Electron. Lett., 2016, 52, pp. 15691571.
    8. 8)
      • 8. Phukan, G.J., Bora, P.K.: ‘Parameter estimation for blind classification of digital modulations’, IET Signal Process., 2016, 10, pp. 758769.
    9. 9)
      • 9. Xiong, P., Wu, L.L., Ru, X.H.: ‘A novel recognition method for hybrid modulation radar signals’. Proc. of 2015 IET Int. Radar Conf., 2015, pp. 15.
    10. 10)
      • 10. Choqueuse, V., Azou, S., Yao, K., et al: ‘Blind modulation recognition for MIMO systems’, MTA Rev., 2009, 19, (2), pp. 183196.
    11. 11)
      • 11. Kharbech, S., Dayoub, I.: ‘Blind digital modulation identification for time-selective MIMO channels’, IEEE Wirel. Commun. Lett., 2014, 3, (4), pp. 373376.
    12. 12)
      • 12. Hassan, K., Nzza, C.N., Berbineau, M., et al: ‘Blind modulation identification for MIMO systems’. Proc. of 2010 IEEE Global Telecommunications Conf. (GLOBECOM 2010), 2010, vol. 2010, pp. 15.
    13. 13)
      • 13. Hassan, K., Dayoub, I., Hamouda, W., et al: ‘Blind digital modulation identification for spatially-correlated MIMO systems’, IEEE Trans. Wirel. Commun., 2012, 11, (2), pp. 683693.
    14. 14)
      • 14. Kharbech, S., Dayoub, I., Zwingelstein-Colin, M., et al: ‘On classifiers for blind feature-based automatic modulation classification over multiple-input–multiple-output channels’, IET Commun., 2016, 10, (7), pp. 790795.
    15. 15)
      • 15. Turan, M., öner, M., çrpan, H.A.: ‘Joint modulation classification and antenna number detection for MIMO systems’, IEEE Commun. Lett., 2016, 20, (1), pp. 193196.
    16. 16)
      • 16. Gomaa, A., Jalloul, L.M.A., Mansour, M.: ‘Max-log-MAP optimal MU-MIMO receiver for joint data detection and interferer modulation classification’, IEEE Commun. Soc., 2016, 20, (7), pp. 13891392.
    17. 17)
      • 17. Bishop, M.C.: ‘Pattern recognition and machine learning’ (Springer, New York, 2006), vol. 4, no. 4.
    18. 18)
      • 18. Huang, G.B., Zhu, Q.Y., Siew, C.K.: ‘Extreme learning machine: theory and applications’, Neurocomputing, 2006, 70, (1), pp. 489501.
    19. 19)
      • 19. Huang, G.B., Zhu, Q.Y., Siew, C.K.: ‘Extreme learning machine: new learning scheme of feedforward neural networks’. Proc. of Int. Joint Conf. on Neural Networks, 2004, vol. 2, no. 1, pp. 985C9990.
    20. 20)
      • 20. Huang, G., Song, S., Gupta, J.N.D., et al: ‘Semi-supervised and unsupervised extreme learning machines’, IEEE Trans. Cybern., 2014, 44, (12), pp. 24052417.
    21. 21)
      • 21. Li, K., Zhang, J., Xu, H., et al: ‘A semi-supervised extreme learning machine method based on co-training’, J. Comput. Inf. Syst., 2013, 9, (1), pp. 207214.
    22. 22)
      • 22. Ratle, F., Camps-Valls, G., Weston, J.: ‘Semisupervised neural networks for efficient hyperspectral image classification’, IEEE Trans. Geosci. Remote Sens., 2010, 48, (5), pp. 22712282.
    23. 23)
      • 23. Zong, W., Huang, G.B., Chen, Y.: ‘Weighted extreme learning machine for imbalance learning’, Neurocomputing, 2013, 101, pp. 229242.
    24. 24)
      • 24. Wang, G., Wang, F., Chen, T., et al: ‘Solution path for manifold regularized semi-supervised classification’, IEEE Trans. Cybern., 2012, 42, (2), pp. 308319.
    25. 25)
      • 25. Shiu, D.S., Foschini, G.J., Gans, M.J., et al: ‘Fading correlation and its effect on the capacity of multielement antenna systems’, IEEE Trans. Commun., 2000, 48, (3), pp. 502513.
    26. 26)
      • 26. Cho, Y.S., Kim, J., Yang, W.Y., et al: ‘MIMO-OFDM wireless communications with MATLAB’ (John Wiley & Sons, 2010).
    27. 27)
      • 27. Swami, A., Sadler, B.M.: ‘Hierarchical digital modulation classification using cumulants’, IEEE Trans. Commun., 2000, 48, (3), pp. 416429.
    28. 28)
      • 28. Li, L., Liu, D., Ouyang, J.: ‘A new regularization classification method based on extreme learning machine in network data’, J. Inf. Comput. Sci., 2012, 9, (12), pp. 33513363.
    29. 29)
      • 29. Su, L., Yao, M.: ‘Extreme learning machine with multiple kernels’. 2013 10th IEEE Int. Conf. on Control and Automation (ICCA), IEEE, 2013, pp. 424429.
    30. 30)
      • 30. Storn, R., Price, K.: ‘Differential evolution a simple and efficient heuristic for global optimization over continuous spaces’, J. Glob. Optim., 1997, 11, (4), pp. 341359.
    31. 31)
      • 31. Qin, A.K., Huang, V.L., Suganthan, P.N.: ‘Differential evolution algorithm with strategy adaptation for global numerical optimization’, IEEE Trans. Evol. Comput., 2009, 13, (2), pp. 398417.
    32. 32)
      • 32. Cao, J., Lin, Z., Huang, G.B.: ‘Self-adaptive evolutionary extreme learning machine’, Neural Process. Lett., 2012, 36, (3), pp. 285305.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2015.1222
Loading

Related content

content/journals/10.1049/iet-com.2015.1222
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address