© The Institution of Engineering and Technology
This study derives several new and simple closedform approximations for the average symbol error rate (ASER) and outage probability performance metrics of digital communication systems (with/without diversity receivers) impaired by additive white Gaussian noise and fading. These approximations utilise the coefficients of the Poincare series expansion for the probability density function (PDF) of signaltonoise ratio (SNR) random variable in conjunction with Mellin transform of the conditional error probability and/or its auxiliary functions to generalise some of the known asymptotic ASER/outage probability expressions to a wider range of modulation schemes and different types of propagation environments (including κ–μ, η–μ and α–μ fading channels). A new class of asymptotic approximations for the ASER/outage probability is also derived (based on a normalised asymptotic PDF of SNR) that is considerably better than the conventional highSNR approximation although both techniques need only the first nonzero term of the Maclaurin (if exists) or the Poincare series expansion of the channel PDF. The authors’ also investigate the utility/efficacy of Welch–Satterthwaite and Moschopoulos approximations for yielding accurate predictions of the ASER in the lowSNR regime for different fading environments. Closedform approximations for the ergodic (average) channel capacities of different types of fading channels with/without diversity reception are also derived.
References


1)

H. AbdelGhaffar ,
S. Pasupathy
.
Asymptotical performance of Mary and binary signals over multipath/multichannel Rayleigh and Rician fading.
IEEE Trans. Commun.
,
11 ,
2721 
2731

2)

Z. Wang ,
G.B. Giannakis
.
A simple and general parameterization quantifying performance in fading channels.
IEEE Trans. Commun.
,
8 ,
1389 
1398

3)

3. Ma, Y., Wang, Z., Pasupathy, S.: ‘Asymptotic performance of hybridselection/maximumratio combining over fading channels’, IEEE Trans. Commun., 2006, 54, (5), pp. 770–777 (doi: 10.1109/TCOMM.2006.874013).

4)

4. Nasri, A., Schober, R., Ma, Y.: ‘Unified asymptotic analysis of linearly modulated signals in fading, nonGaussian noise, and interference’, IEEE Trans. Commun., 2008, 56, pp. 980–990 (doi: 10.1109/TCOMM.2008.060267).

5)

5. Annamalai, A., Buehrer, M.: ‘Tutorial notes on ‘spacetime processing’ presented at the MPRG annual symposium/wireless summer school, June 2005.

6)

A.J. Goldsmith ,
S.G. Chua
.
Variablerate variablepower MQAM for fading channels.
IEEE Trans. Commun.
,
1218 
1230

7)

7. Annamalai, A., Adebola, E., Olabiyi, O.: ‘Further results on the Dirac delta approximation and the moment generating function techniques for error probability analysis in fading channels’, Int. J. Comput. Netw. Commun., 2013, 5, (1), pp. 21–39 (doi: 10.5121/ijcnc.2013.5102).

8)

8. Adebola, E., Olabiyi, O., Annamalai, A.: ‘On the Dirac delta approximation and the MGF method for ASER analyses of digital communications over fading channels’, IEEE Commun. Lett., 2013, 17, (2), pp. 245–248 (doi: 10.1109/LCOMM.2012.120612.122130).

9)

9. Olabiyi, O., Annamalai, A.: ‘Unified analysis of twohop cooperative amplifyandforward multirelay networks’, Int. J. Comput. Netw. Commun., 2012, 4, (6), pp. 1–20 (doi: 10.5121/ijcnc.2012.4601).

10)

33. Olabiyi, O., Annamalai, A.: ‘Invertible exponentialtype approximations for the Gaussian probability integral’, IEEE Wirel. Commun. Lett., 2012, 1, (5), pp. 544–547 (doi: 10.1109/WCL.2012.080112.120232).

11)

11. Olabiyi, O., Annamalai, A.: ‘New exponentialtype approximations for erfc(.) and erfcp(.) functions with applications’. Proc. Eighth IEEE Int. Conf. on Wireless Communication and Mobile Computing, Cyprus, August 2012, pp. 1221–1226.

12)

12. Tellambura, C., Dhungana, Y., Soysa, M.: ‘Uniform approximations for wireless performance in fading, noise and interference’. Proc. IEEE ICC'12: Communications Theory Symp., pp. 2410–2415. , November 2013, vol. 61, pp. 4768–4779.

13)

13. Dhungana, Y., Tellambura, C.: ‘New simple approximations for error probability and outage in fading’, IEEE Commun. Lett., 2012, 16, (11), pp. 1760–1763 (doi: 10.1109/LCOMM.2012.092112.121280).

14)

14. Satterthwaite, F.E.: ‘An approximate distribution of estimates of variance components’, Biometrics Bull., 1946, 2, pp. 110–114 (doi: 10.2307/3002019).

15)

15. Welch, B.L.: ‘The generalization of student's problem when several different population variances are involved’, Biometrika, 1947, 34, pp. 28–35.

16)

P.G. Moschopoulos
.
The distribution of the sum of independent Gamma random variables.
Ann. Inst. Statist. Math. (Part A)
,
541 
543

17)

M.S. Alouini ,
A. Abdi ,
M. Kaveh
.
Sum of gamma variates and performance of wireless communication systems over Nakagamifading channels.
IEEE Trans. Veh. Technol.
,
1471 
1480

18)

18. Poincaré, H.: ‘Sur les intégrales irrégulières des équations linéaires’, Acta Math., 1886, 8, pp. 295–344 (doi: 10.1007/BF02417092).

19)

M.D. Yacoub
.
The κμ distribution and the ημ distribution.
IEEE Antennas Propag. Mag.
,
1 ,
68 
81

20)

20. Gradsteyn, I., Ryzhik, I.: ‘Table of integrals, series and products’ (Academic Press, 2007, 7th edn.).

21)

A. Magableh ,
M. Matalgah
.
Moment generating function of the generalized α−μ distribution with applications.
IEEE Commun. Lett.
,
411 
413

22)

M.D. Yacoub
.
The αµ distribution: a general fading distribution.
IEEE Trans. Veh. Technol.
,
1

23)

23. Simon, M.K., Alouini, M.S.: ‘Digital communication over fading channels’ (Wiley, New York, 2005, 2nd edn.).

24)

30. Ermolova, N.Y.: ‘Moment generating function of the generalized ημ and κμ distribution and their applications to performance evaluations of communications systems’, IEEE Commun. Lett., 2008, 12, (7), pp. 502–504 (doi: 10.1109/LCOMM.2008.080365).

25)

B. Maham ,
A. Hjorungnes
.
Asymptotic performance analysis of amplifyandforward cooperative networks in a Nakagamim fading environment.
IEEE Commun. Lett.
,
5 ,
300 
302
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcom.2014.0388
Related content
content/journals/10.1049/ietcom.2014.0388
pub_keyword,iet_inspecKeyword,pub_concept
6
6