http://iet.metastore.ingenta.com
1887

Dynamic user equipment-based hysteresis-adjusting algorithm in LTE femtocell networks

Dynamic user equipment-based hysteresis-adjusting algorithm in LTE femtocell networks

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In long-term evoluation (LTE) femtocell networks, hysteresis is one of the main parameters which affects the performance of handover with a number of unnecessary handovers, including ping-pong, early, late and incorrect handovers. In this study, the authors propose a hybrid algorithm that aims to obtain the optimised unique hysteresis for an individual mobile user moving at various speeds during the inbound handover process. This algorithm is proposed for two-tier scenarios with macro and femto. The centralised function in this study evaluates the overall handover performance indicator. Then, the handover aggregate performance indicator (HAPI) is used to determine an optimal configuration. Based on the received reference signal-to-interference-plus-noise ratio, the distributed function residing on the user equipment (UE) is able to obtain an optimal unique hysteresis for the individual UE. Theoretical analysis with three indication boundaries is provided to evaluate the proposed algorithm. A system-level simulation is presented, and the proposed algorithm outperformed the existing approaches in terms of handover failure, call-drop and redundancy handover ratios and also achieved better overall system performance.

References

    1. 1)
      • 1. Zhang, J., de la Roche, G.: ‘Femtocells: technologies and deployment’ (John Wiley & Sons, UK, 2010, 1st edn.).
    2. 2)
      • 2. 3GPP TR 36.902, V9.0.0: ‘Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Self-configuring and self-optimizing network use cases and solutions (Release 9)’, 2009.
    3. 3)
      • 3. Bae, H.D., Ryu, B.H., Park, N.H.: ‘Analysis of handover failures in LTE femtocell systems’. Proc. IEEE Australasian Telecommunication Networks and Applications Conf. (ATNAC), Daejeon, South Korea, November 2011, pp. 15.
    4. 4)
      • 4. Legg, P., Hui, G., Johansson, J.J.: ‘A simulation study of LTE intra-frequency handover performance’. Proc. IEEE 72nd Vehicular Technology Conf. (VTC 2010-Fall), Ottawa, Canada, September 2010, pp. 1015.
    5. 5)
      • 5. Lee, Y., Shin, B., Lim, J., Hong, D.: ‘Effects of time-to-trigger parameter on handover performance in SON-based LTE systems’. Sixteenth Asia-Pacific Conf. Proc. IEEE Communications, Auckland (APCC), November 2010, pp. 543547.
    6. 6)
      • 6. Li, W.Y., Duan, X.Y., Jia, S.C., Zhang, L., Liu, Y., Lin, J.: ‘A dynamic hysteresis-adjusting algorithm in LTE self-organization networks’. Proc. IEEE 75th Vehicular Technology Conf. (VTC Spring), Yokohama, May 2012, pp. 15.
    7. 7)
      • 7. Jansen, T., Balan, I., John, T., Moerman, I., Kurner, T.: ‘Handover parameter optimization in LTE self-organizing networks’. Proc. IEEE 72nd Vehicular Technology Conf. (VTC2010-Fall), Ottawa, September 2010, pp. 15.
    8. 8)
      • 8. Mwanje, S.S., Zia, N., Mitschele-Thiel, A.: ‘Self-organized handover parameter configuration for LTE’. Proc. Int. Symp. Wireless Communication Systems (ISWCS), Paris, August 2012, pp. 2630.
    9. 9)
    10. 10)
      • 10. Lee, D.W., Gil, G.T., Kim, D.H.: ‘A cost-based adaptive handover hysteresis scheme to minimize the handover failure rate in 3GPP LTE system’, EURASIP J. Wirel. Commun. Netw., 2010, 2010, (6), pp. 28doi: 10.1155/2010/750173.
    11. 11)
    12. 12)
      • 12. Li, Y., Li, M., Cao, B., Wang, Y., Liu, W.: ‘Dynamic optimization of handover parameters adjustment for conflict avoidance in long term evolution’. IEEE Int. Conf. Communications in China (ICCC '12), 2013, 10, (1), pp. 5671.
    13. 13)
      • 13. 3GPP: ‘HNB and HNB-macro propagation models’. Qualcomm Europe, TSG-RAN WG4 Meeting # 44-bis, R4-071617, Shanghai, China, October 2007.
    14. 14)
      • 14. 3GPP TS 36 133 V9.3.0: ‘LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements for support of radio resource management (Release 9)’, 2010.
    15. 15)
      • 15. Kim, B.J.: ‘The circle of Apollonius’. Mathematics Education Program J. Wilson, EMAT 6690, The University of Georgia, http://jwilson.coe.uga.edu/EMAT6680Fa09/KimB/EMAT6690/Essay2/6690%20apollonius%20circle.pdf, accessed January 2014.
    16. 16)
      • 16. 3GPP: ‘Simulation assumptions and parameters for FDD HeNB RF requirements’. Alcatel-Lucent, pico-Chip Designs, Vodafone, TSG RAN WG4 (Radio) Meeting # 51, R4–092042, San Francisco, CA, May 2009.
    17. 17)
      • 17. 3GPP TS 36.331 V10.7.0: ‘LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification (Release 10)’, 2012.
    18. 18)
      • 18. Schwerdtfeger, H.: ‘Geometry of complex numbers: circle geometry, moebius transformation, non-euclidean geometry’ (Courier Dover Publications, 2012, 1st edn.).
    19. 19)
      • 19. 3GPP TS 36.304 V9.2.0: ‘3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) procedures in idle mode (Release 9)’, 2010.
    20. 20)
      • 20. Nielsen, M.B.G.M., Nielsen, R.B.: ‘Physical layer measurements in 3GPP LTE’. Project Report, Aalborg University, http://projekter.aau.dk/projekter/files/60737111/diplom.pdf, accessed January 2014.
    21. 21)
      • 21. Hamalainen, S., Sanneck, H., Sartori, C.: ‘LTE self-organising networks (SON): network management automation for operational efficiency’ (John Wiley Sons, 2011, 1st edn.).
    22. 22)
      • 22. 3GPP TR 36.902, V9.0.0: ‘LTE; Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Self-configuring and self-optimizing network (SON) use cases and solutions (Release 9)’, 2009.
    23. 23)
      • 23. Korhonen, J.: ‘Introduction to 3G mobile communications’ (Artech House, Inc., Norwood, USA, 2003, 1st edn.).
    24. 24)
      • 24. 3GPP TR 36.839, V11.1.0: ‘3rd Generation Partnership Project; Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Mobility enhancements in heterogeneous networks (Release 11)’. 2012.
    25. 25)
      • 25. 3GPP: ‘Further results of the mobility state detection in UE’. Nokia Siemens Networks, TSG-RAN WG4 Meeting # 44-bis, R4-081120, Kansas City, USA, May 2008.
    26. 26)
      • 26. Kim, J., Lee, G., In, H.P.: ‘Adaptive time-to-trigger scheme for optimizing LTE handover’, Int. J. Control Autom., 2014, 7, (4), pp. 3544.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2014.0277
Loading

Related content

content/journals/10.1049/iet-com.2014.0277
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address