© The Institution of Engineering and Technology
This study addresses the illconditioning problem of the memory polynomial (MP) model with application to the predistortion of highly nonlinear power amplifiers with memory effects. A resourceefficient latticebased MP structure built using the cascade of a MP generator and a lattice predictor is proposed to overcome the illconditioning of the MP's data matrix. The proposed model performances are benchmarked against those of the MP model as well as the orthogonal MP model. The experimental results demonstrate the suitability of the proposed predistorter as it achieves similar performance in the time and the frequency domains compared to the MP counterpart while alleviating its illconditioning problem.
References


1)

13. Ghannouchi, F.M., Taringou, F., Kwan, A., Hammi, O., Malhamé, R.: ‘Identification of truestatic predistorter using a sine wave and accurate quantification of memory effects in broadband wireless transmitters’, IET Commun., 2011, 5, (9), pp. 1268–1274 (doi: 10.1049/ietcom.2010.0600).

2)

B. Ai ,
Z.D. Zhong ,
G. Zhu ,
R.T. Xu ,
Z.Q. Li
.
Twodimensional indexing polynomialbased predistorter for power amplifiers with memory effects.
IET Commun.
,
10 ,
1263 
1271

3)

L. Ding ,
G.T. Zhou ,
D.R. Morgan ,
Z.X. Ma ,
J.S. Kenney ,
J. Kim ,
C.R. Giardina
.
A robust digital baseband predistorter constructed using memory polynomials.
IEEE Trans. Commun.
,
1 ,
159 
165

4)

D. Zhou ,
V.E. DeBrunner
.
Novel adaptive nonlinear predistorters based direct learning algorithm.
IEEE Trans. Signal Process.
,
1 ,
120 
133

5)

J. Kim ,
K. Konstantinou
.
Digital predistortion of wideband signals based on power amplifier model with memory.
Electron. Lett.
,
23 ,
1417 
1418

6)

F.M. Ghannouchi ,
O. Hammi
.
Behavioral modeling and predistortion.
IEEE Microw. Mag.
,
7 ,
52 
64

7)

M. Younes ,
O. Hammi ,
A. Kwan ,
F.M. Ghannouchi
.
An accurate complexityreduced “PLUME” model for behavioral modeling and digital predistortion of RF power amplifiers.
IEEE Trans. Ind. Electron.
,
4 ,
1397 
1405

8)

R. Raich ,
H. Qian ,
G.T. Zhou
.
Orthogonal polynomials for power amplifier modeling and predistorter design.
IEEE Trans. Veh. Technol.
,
5 ,
1468 
1479

9)

R. Raich ,
G.T. Zhou
.
Orthogonal polynomials for complex Gaussian processes.
IEEE Trans. Signal Process.
,
10 ,
2788 
2797

10)

A.N. D'Andrea ,
V. Lottici ,
R. Reggiannini
.
Efficient digital predistortion in radio relay links with nonlinear power amplifiers.
IEE Proc. Commun.
,
3 ,
175 
179

11)

11. SaiedBouajina, S., Hammi, O., JaidaneSaidane, M., Ghannouchi, F.M.: ‘Experimental approach for robust identification of radiofrequency power amplifier behavioural models using polynomial structures’, IET Microw. Antennas Propag., 2010, 4, (11), pp. 1818–1828 (doi: 10.1049/ietmap.2009.0559).

12)

12. Hammi, O., Boumaiza, S., Ghannouchi, F.M.: ‘On the robustness of digital predistortion function synthesis and average power tracking for highly nonlinear power amplifiers’, IEEE Trans. Microw. Theory Tech., 2007, 55, (6), pp. 1382–1389 (doi: 10.1109/TMTT.2007.895237).

13)

13. Li, H., Chen, Z., Wang, D.: ‘Nonlinear least squares lattice algorithm for identifying the power amplifier with memory effects’. Proc. IEEE 63rd Vehicular Technology Conf., May 2006, pp. 2149–2153.

14)

A. Zerguine ,
A. Shafi ,
M. Bettayeb
.
Multilayer perceptronbased DFE with lattice atructure.
IEEE Trans. Neural Netw.
,
4 ,
532 
545

15)

15. Ozden, M.T., Kayran, A.H.: ‘Volterra model based decision feedback equalisation with lattice orthogonalisation’, Electron. Lett., 2003, 39, (5), pp. 477–479 (doi: 10.1049/el:20030270).

16)

16. Haykin, S.: ‘Linear prediction’, in Haykin, S. (Ed.): ‘Adaptive filter theory’ (PrenticeHall, 2001, 3rd edn.).

17)

S.C. Jung ,
O. Hammi ,
F.M. Ghannouchi
.
Design optimization and DPD linearization of GaNbased unsymmetrical Doherty power amplifiers for 3 G multicarrier applications.
IEEE Trans. Microw. Theory Tech.
,
9 ,
2105 
2113

18)

O. Hammi ,
S. Carichner ,
B. Vassilakis ,
F.M. Ghannouchi
.
Power amplifiers’ model assessment and memory effects intensity quantification using memoryless postcompensation.
IEEE Trans. Microw. Theory Tech.
,
12 ,
3170 
3179
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcom.2014.0129
Related content
content/journals/10.1049/ietcom.2014.0129
pub_keyword,iet_inspecKeyword,pub_concept
6
6