Â© The Institution of Engineering and Technology
This study takes a new receiving approach to detect an ultrawideband (UWB) signal in the presence of multiple access interference (MAI). A generalised normalLaplace (GNL) distribution is exploited for designing a novel multiuser UWB receiver. To more accurately comply with real statistical behaviours of the MAIplusnoise in timehopping multiple access UWB systems, a modified parameter estimator, which is an adaptive method of moments estimation (aMME), is proposed. In the existing studies, the analysis about GNL model shows appropriate results for UWB simulations, while it requires heavy complexity to obtain the precise distribution because of no existence of a closedform probability density function (PDF) expression. To practically evaluate the GNL PDF, the fast Fourier transform, which can significantly reduce the computational complexity is considered. The GNL using the aMME outperforms the conventional matched filter UWB receiver, the softlimiting receiver, the Gaussianâ€“Laplace mixture receiver, the porder metric receiver and the previous GNL receivers, especially in high SNR ranges. Furthermore, the presented GNL receiving method is applied to each finger of the conventional Rake receiver for signal detection in IEEE UWB multipath channels. The proposed Rake receiver based on the GNL distribution performs better than the conventional Rake receiver in multipath fading channels.
References


1)

M.Z. Win ,
R.A. Scholtz
.
Impulse radio: how it works.
IEEE Commun. Lett.
,
36 
38

2)

G. Durisi ,
S. Benedetto
.
Performance evaluation of THPPM UWB systems in the presence of multiuser interference.
IEEE Commun. Lett.
,
5 ,
224 
226

3)

3. Durisi, G., Romano, G.: ‘On the validity of Gaussian approximation to characterize the multiuser capacity of UWB TH PPM’. Proc. IEEE Conf. Ultra Wideband Syst. and Technologies, Baltimore, MD, May 2002, pp. 157–161.

4)

4. Hamdi, K.A., Gu, X.: ‘On the validity of the Gaussian approximation for performance analysis of THCDMA/OOK impulse radio networks’. Proc. IEEE Vehicular Technology Conf. (VTC 2003Spring), Jeju, Korea, April 2003, pp. 2211–2215.

5)

A.R. Forouzan ,
M. NasiriKenari ,
J. Salehi
.
Performance analysis of timehopping spreadspectrum multipleaccess systems:uncoded and coded schemes.
IEEE Trans. Wirel. Commun.
,
671 
681

6)

6. Beaulieu, N.C., Hu, B.: ‘Softlimiting receiver structures for timehopping UWB in multipleaccess interference’, IEEE Trans. Veh. Technol., 2008, 5, (2), pp. 810–818 (doi: 10.1109/TVT.2007.906384).

7)

7. Beaulieu, N.C., Shao, H., Fiorina, J.: ‘Porder metric UWB receiver structures with superior performance’, IEEE Trans. Commun., 2008, 10, (10), pp. 1666–1676.

8)

N.C. Beaulieu ,
S. Niranjayan
.
UWB receiver designs based on a GaussianLaplacian noiseplusMAI model.
IEEE Trans. Commun.
,
3 ,
997 
1006

9)

9. Beaulieu, N.C., Young, D.J.: ‘Designing timehopping ultrawide bandwidth receivers for multiuser interference environments’, Proc. IEEE, 2009, 2, (2), pp. 255–284 (doi: 10.1109/JPROC.2008.2008782).

10)

10. Kim, S.: ‘Reliability of generalized normal Laplacian distribution model in THBPSK UWB systems’, IEICE Trans. Fundam., 2011, 8, (8), pp. 1772–1775 (doi: 10.1587/transfun.E94.A.1772).

11)

11. Kim, S.: ‘Detector for signals in Generalised normalLaplace distributed noise’, IET Electron. Lett., 2010, 5, (10), pp. 683–684 (doi: 10.1049/el.2010.0376).

12)

12. An, J., Kim, S.: ‘An improved UWB receiver employing generalized normalLaplacian distribution model’, IEICE Electron. Express, 2011, 9, pp. 1505–1510 (doi: 10.1587/elex.8.1505).

13)

J.W. Cooley ,
J.W. Tukey
.
An algorithm for the machine calculation of complex fourier series.
Math. Comput.
,
297 
301

14)

14. Niranjayan, S., Nallanathan, A., Kannan, B.: ‘Modeling of multiple access interference and BER derivation for TH and DS UWB multiple access systems’, IEEE Trans. Wirel. Commun., 2006, 10, (10), pp. 2794–2804 (doi: 10.1109/TWC.2006.04530).

15)

15. Hu, B., Beaulieu, N.C.: ‘Accurate evaluation of multipleaccess performance in THPPM and THBPSK UWB systems’, IEEE Trans. Commun., 2004, 10, (10), pp. 1058–1066.

16)

16. Reed, W.J.: ‘The normalLaplace distribution and its relatives’, in Balakrishnan, N., et al (Ed.): Advances in distribution theory, order statistics, and inference (Birkhäuser, Boston, 2004), pp. 61–74.

17)

22. Miller, J.H., Thomas, J.B.: ‘Detectors for discretetime signals in nonGaussian noise’, IEEE Trans. Inf. Theory, 1972, IT18, (2), pp. 241–250 (doi: 10.1109/TIT.1972.1054787).

18)

18. Shao, H., Beaulieu, N.C.: ‘An analytical method for calculating the bit error rate performance of rake reception in UWB multipath fading channels’, IEEE Trans. Commun., 2010, 4, (4), pp. 1112–1120 (doi: 10.1109/TCOMM.2010.04.080345).

19)

19. Jia, T., Kim, D.I.: ‘Analysis of channelaveraged SINR for indoor UWB rake and transmitted reference systems’, IEEE Trans. Commun., 2007, 10, (10), pp. 2022–2032 (doi: 10.1109/TCOMM.2007.906435).

20)

20. IEEE P802.1502/490r1SG3a: ‘.

21)

21. Benedetto, M.D., Giancola, G.: ‘Understanding ultra wide band radio fundamentals’ (PrenticeHall, NJ, 2004).

22)

22. Brennan, D.G.: ‘Linear diversity combining techniques’. Proc. IEEE IRE, June 1959, pp. 1075–1102.

23)

23. Shen, X., Guizani, M., Qiu, R.C., LeNgoc, T.: ‘Ultrawideband wireless communications and networks’ (Wiley, 2006).

24)

24. Win, M.Z., Chrisikos, G., Sollenberger, N.R.: ‘Performance of RAKE reception in dense multipath channels: implications of spreading bandwidth and selection diversity order’, IEEE J. Sel. Areas Commun., 2000, 8, (8), pp. 1516–1525 (doi: 10.1109/49.864015).

25)

25. Kim, D.I.: ‘Nearoptimal and suboptimal receivers for multiuser UWB impulse radio systems in multipath’, IEEE Trans. Commun., 2009, 10, (10), pp. 3001–3011 (doi: 10.1109/TCOMM.2009.10.070528).
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcom.2014.0026
Related content
content/journals/10.1049/ietcom.2014.0026
pub_keyword,iet_inspecKeyword,pub_concept
6
6