access icon free Signal leakage neutralisation in instantaneous non-regenerative relaying networks under channel uncertainty

In a multi-user wireless network, physical layer security is an important issue, especially when some of the served users are malicious. As these users actively participate in the network, their channel state information can be estimated or feedback, although not perfectly known. With this channel uncertainty, the worst-case signal leakage to eavesdropping users’ needs to be managed. The authors propose a robust instantaneous relay design that improves the worst-case secrecy rate performance, and decompose the problem into two sub-problems: First, the achievable signal leakage or leakage-to-noise ratio region is studied. Second, for fixed signal leakage constraints, the achievable secrecy rate region is computed. To approach the non-convex optimisation problems, the authors propose to iteratively solve for the phases and magnitudes of the equivalent channel matrix, a function of the relay matrix. The numerical simulations illustrate that the proposed alternating optimisation algorithm achieves higher secrecy rates than those in a system without an instantaneous relay.

Inspec keywords: relay networks (telecommunication); concave programming; telecommunication security; matrix algebra; radio networks; signal processing

Other keywords: equivalent channel matrix; leakage-to-noise ratio region; relay matrix; secrecy rate region; worst-case secrecy rate performance; nonconvex optimisation problems; physical layer security; channel state information; multiuser wireless network; numerical simulations; signal leakage neutralisation; fixed signal leakage constraints; instantaneous nonregenerative relaying networks; channel uncertainty

Subjects: Optimisation techniques; Radio links and equipment; Signal processing and detection; Linear algebra (numerical analysis)

References

    1. 1)
      • 7. Liang, Y., Poor, H.V., Shamai, S.: ‘Information theoretic security’ (Now Publishers Inc., 2009).
    2. 2)
      • 36. Mohajer, S., Diggavi, S.N., Tse, D.N.C.: ‘Approximate capacity of a class of Gaussian relay-interference networks’. 2009 IEEE Int. Symp. Information Theory, June 2009, vol. 57, no. 5, pp. 3135.
    3. 3)
    4. 4)
      • 8. Liu, R.-H., Trappe, W., (eds.): ‘Securing wireless communications at the physical layer’ (Springer, 2009).
    5. 5)
      • 37. Berger, S., Wittneben, A.: ‘Cooperative distributed multiuser MMSE relaying in wireless ad-hoc networks’. Proc. Asilomar Conf. Signals, Systems and Computers, 2005, pp. 10721076.
    6. 6)
    7. 7)
      • 51. Lalos, A.S., Rontogiannis, A.A., Berberidis, K.: ‘Channel estimation techniques in amplify and forward relay networks’. Proc. SPAWC, 2008.
    8. 8)
      • 59. Waldspurger, I., D'Aspremont, A., Mallat, S.: ‘Phase recovery, MAXCUT and complex semidefinite programming’. Preprint, available at arXiv:1206.0102v2, 2012, pp. 130.
    9. 9)
      • 6. Lee, N., Jafar, S.A.: ‘Aligned interference neutralization and the degrees of freedom of the 2 user interference channel with instantaneous relay’. Submitted to IEEE Transactions on Information Theory, 2011, pp. 117. [Online] Available at: http://arxiv.org/abs/1102.3833.
    10. 10)
    11. 11)
    12. 12)
      • 9. Bloch, M., Barros, J.: ‘Physical-layer security: from information theory to security engineering’ (Cambridge University Press, 2011).
    13. 13)
    14. 14)
      • 55. Horn, R.A.: ‘Matrix analysis’ (Cambridge University Press, 1985).
    15. 15)
      • 60. Zhang, S.-Z., Huang, Y.-W.: ‘Complex quadratic optimization and semidefinite programming’, SIAM J. Optim., 2004, pp. 117.
    16. 16)
      • 21. Dong, L., Jafarkhani, H.: ‘Cooperative jamming and power allocation for wireless relay networks in presence of eavesdropper’. Proc. IEEE Int. Conf. Communications (ICC), 2011.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 28. Bassily, R., Ulukus, S.: ‘Secure communication in multiple relay networks through decode-and-forward strategies’, J. Commun. Netw., 2012, 14, (4), pp. 352363.
    22. 22)
    23. 23)
      • 47. Liang, Y.-B., Kramer, G., Poor, V., Shamai, S.: ‘Compound wiretap channels’, EURASIP J. Wirel. Commun. Netw., 2009.
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 3. El Gamal, A., Hassanpour, N.: ‘Relay-without-delay’. Proc. Int. Symp. Information Theory, 2005, pp. 10781080.
    28. 28)
    29. 29)
      • 40. Ho, Z.K.-M., Jorswieck, E., Gerbracht, S.: ‘Information leakage neutralization for the relay-assisted multi-carrier interference channel’. Will appear in Journal on Selected Areas of Communications, available at http://tnt.wcms-file2.tu-dresden.de/BibtexDbMng/upload/ZG12.pdf, 2013.
    30. 30)
      • 43. Shahbazpanahi, S., Gershman, A.B., Luo, Z.-Q., Wong, K.M.: ‘Robust adaptive beamforming for general-rank signal models’, IEEE Trans. Inf. Theory, 2003, 51, (9), pp. 22572269.
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
      • 50. Mohammed, S.K., Larsson, E.G.: ‘Per-antenna constant envelope precoding for large multi-user MIMO systems’. Preprint, available at http://arxiv.org/pdf/1201.1634.pdf, 2012, vol. 1, pp. 127.
    39. 39)
    40. 40)
      • 7. Liang, Y., Poor, H.V., Shamai, S.: ‘Information theoretic security’ (Now Publishers Inc., 2009).
    41. 41)
    42. 42)
      • 2. IEEE Std. 802.16j-2009: ‘IEEE Standard for Local and Metropolitan Area Networks – Part 16: Air Interface for Fixed Broadband Wireless Access Systems – Amendment 1: Multiple Relay Specification’, 2009.
    43. 43)
    44. 44)
    45. 45)
    46. 46)
      • 1. Seidel, E.: ‘Initial thoughts on LTE advanced for 3GPP release 10’. LTE World Summit, Berlin, 2009.
    47. 47)
      • 41. Gerbracht, S., Jorswieck, E.A., Zheng, G., Ottersten, B.: ‘Non-regenerative two-hop wiretap channels using interference neutralization’. Proc. IEEE Int. Workshop on Information Forensics and Security (WIFS), 2012.
    48. 48)
      • 36. Mohajer, S., Diggavi, S.N., Tse, D.N.C.: ‘Approximate capacity of a class of Gaussian relay-interference networks’. 2009 IEEE Int. Symp. Information Theory, June 2009, vol. 57, no. 5, pp. 3135.
    49. 49)
      • 12. Ho, Z.K.-M., Jorswieck, E., Gerbracht, S.: ‘Efficient information leakage neutralization on a relay-assisted multi-carrier interference channel’. Proc. ICASSP, 2013.
    50. 50)
    51. 51)
      • 56. Luo, Z.-Q., Luo, X.-D., Kisialiou, M.: ‘An efficient quasi-maximum likelihood decoder for PSK signals’. Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), 2003, no. 1, pp. 561564.
    52. 52)
      • 24. Vishwakarma, S., Chockalingam, A.: ‘Amplify-and-forward relay beamforming for secrecy with cooperative jamming and imperfect CSI’. Proc. IEEE Int. Conf. Communications (ICC), 2013, pp. 16401645.
    53. 53)
    54. 54)
    55. 55)
    56. 56)
    57. 57)
      • 13. Hwang, J., Lee, K.-J., Sung, H., Lee, I.: ‘Block diagonalization approach for amplify-and-forward relay systems in MIMO multi-user channels’. IEEE Int. Symp. on Peronal, Indoor and Mobile Radio Communications (PIMRC), 2009, pp. 31493153.
    58. 58)
      • 16. Mourani, B., Motahari, S.A., Khandani, A.K.: ‘Relay-aided interference alignment for the quasi-static interference channel’. Proc. IEEE Int. Symp. Information Theory (ISIT), 2010, pp. 405409.
    59. 59)
    60. 60)
      • 30. Khodakarami, H., Lahouti, F.: ‘Link adaptation for fixed relaying with untrusted relays: transmission strategy design and performance analysis’. Proc. Int. Conf. Telecommunications, 2011, pp. 309314.
    61. 61)
    62. 62)
    63. 63)
    64. 64)
      • 32. Jorswieck, A., Wolf, A.: ‘Resource allocation for the wire-tap multi-carrier broadcast channel’. Proc. 2008 Int. Conf. Telecommunications, June 2008, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2013.0617
Loading

Related content

content/journals/10.1049/iet-com.2013.0617
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading