access icon free Raptor codes-aided relaying for vehicular infotainment applications

Even though the main motivation behind wireless access for vehicular environments was to support time-sensitive safety applications, typical Internet applications are also required to attract private investment that would help expand the network and reduce the cost of implementing the systems. It is well known that the Automatic Repeat reQuest scheme used in the current IEEE 802.11p standard is highly inefficient for vehicular applications. Therefore a raptor-coded decode-and-forward relaying scheme with an efficient feedback channel, named the ‘r-DF scheme’ for infrastructure-to-vehicle infotainment applications is proposed in this study. The scheme is evaluated using a multi-layered simulator combining a realistic IEEE 802.11p physical and MAC layer design considering the presence of interference in a highway and an urban scenario. The simulation shows that the scheme achieved up to double the average aggregate throughput and tens of decoding time improvements over the state-of-the-art.

Inspec keywords: Internet; decode and forward communication; automatic repeat request; codes; automated highways; entertainment; multimedia communication; wireless LAN; vehicular ad hoc networks; radiofrequency interference; access protocols; relay networks (telecommunication)

Other keywords: Internet applications; Raptor codes-aided relaying; feedback channel; intelligent transportation system; vehicular environments; multilayered simulator; decoding time improvements; time-sensitive safety applications; wireless access; raptor-coded decode-and-forward relaying scheme; infrastructure-to-vehicle infotainment applications; r-DF scheme; IEEE 802.11p physical layer design; average aggregate throughput; automatic repeat request scheme; IEEE 802.11p MAC layer design

Subjects: Protocols; Mobile radio systems; Computer communications; Multimedia communications; Multimedia; Codes; Electromagnetic compatibility and interference; Local area networks; Other computer networks; Traffic engineering computing; Protocols

References

    1. 1)
      • 4. Campolo, C., Molinaro, A.: ‘Vehicle-to-roadside multihop data delivery in 802.11p/WAVE vehicular ad hoc networks’. IEEE Global Telecommunications Conf. (GLOBECOM 2010), 2010, pp. 15.
    2. 2)
      • 12. Cataldi, P., Tomatis, A., Grilli, G., Gerla, M.: ‘CORP: cooperative rateless code protocol for vehicular content dissemination’. Proc. Eighth IFIP Mediterranean Annual Ad Hoc Networking Workshop (Med-Hoc-Net), June 2009, pp. 17.
    3. 3)
      • 44. Amadeo, M., Campolo, C., Molinaro, A., Ruggeri, G.: ‘A WAVE-compliant MAC protocol to support vehicle-to-infrastructure non-safety applications’. IEEE Int. Conf. Communications Workshops (ICC Workshops '09), June 2009, pp. 16.
    4. 4)
      • 1. German Association of the Automotive Industry (VDA): ‘Annual report 2010’. Available at: http: //www.vda.de/en/publikationen/jahresberichte/index.html.
    5. 5)
      • 33. Viriyasitavat, W., Tonguz, O., Bai, F.: ‘Network connectivity of VANETs in urban areas’. Proc. Sixth IEEE Communications Society Conf. Sensor, Mesh and Ad Hoc Communications and Networks (SECON ‘09), June 2009, pp. 19.
    6. 6)
      • 39. Ma, X., Chen, X., Refai, H.H.: ‘Performance and reliability of DSRC vehicular safety communication: a formal analysis’, EURASIP J. Wirel. Commun. Netw., 2009, 2009, pp. 113 (doi: 10.1155/2009/969164).
    7. 7)
      • 24. Clarke, R.H.: ‘A statistical theory of mobile radio reception’, Bell Syst. Tech. J., 1968, 47, (6), pp. 9571000 (doi: 10.1002/j.1538-7305.1968.tb00069.x).
    8. 8)
      • 18. Stefanovic, C., Vukobratovic, D., Chiti, F., Niccolai, L., Crnojevic, V., Fantacci, R.: ‘Urban infrastructure-to-vehicle traffic data dissemination using UEP rateless codes’, IEEE J. Sel. Areas Commun., 2011, 29, (1), pp. 94102 (doi: 10.1109/JSAC.2011.110110).
    9. 9)
      • 8. Uzcategui, R., Acosta-Marum, G.: ‘WAVE: a tutorial’, IEEE Commun. Mag., 2009, 47, (5), pp. 126133 (doi: 10.1109/MCOM.2009.4939288).
    10. 10)
      • 34. IEEE 1609.3: ‘IEEE Standard for Wireless Access in Vehicular Environments (WAVE), Networking Services, Std., 2010.
    11. 11)
      • 22. Shokrollahi, A.: ‘Raptor codes’, IEEE Trans. Inf. Theory, 2006, 52, (6), pp. 25512567 (doi: 10.1109/TIT.2006.874390).
    12. 12)
      • 40. Chatzimisios, P., Boucouvalas, A., Vitsas, V.: ‘Performance analysis of IEEE 802.11 DCF in presence of transmission errors’. IEEE Int. Conf. Communications, June 2004, vol. 7, pp. 38543858.
    13. 13)
      • 23. Abdullah, N.F., Doufexi, A., Piechocki, R.J.: ‘Spatial diversity for IEEE 802.11p post-crash message dissemination in a highway environment’. IEEE 71st Vehicular Technology Conf. (VTC-Spring ‘10), May 2010, pp. 15.
    14. 14)
      • 13. Chen, H., Maunder, R., Hanzo, L.: ‘Fountain-code aided file Transfer in 802.11 WLANs’. IEEE 70th Vehicular Technology Conf. Fall 2009 (VTC 2009-Fall), September 2009, pp. 15.
    15. 15)
      • 28. Stibor, L., Zang, Y., Reumerman, H.-J.: ‘Evaluation of communication distance of broadcast messages in a vehicular ad-hoc network using IEEE 802.11p’. IEEE Wireless Communications and Networking Conf. (WCNC ‘07), March 2007, pp. 254257.
    16. 16)
      • 31. Ferreiro-Lage, J.A., Gestoso, C.P., Rubinos, O., Agelet, F.A.: ‘Analysis of unicast routing protocols for VANETs’. Proc. Fifth Int. Conf. Networking and Services (ICNS ‘09), 2009, pp. 518521.
    17. 17)
      • 38. Bianchi, G.: ‘Performance analysis of the IEEE 802.11 distributed coordination function’, IEEE J. Sel. Areas Commun., 2000, 18, (3), pp. 535547 (doi: 10.1109/49.840210).
    18. 18)
      • 19. IEEE 802.11-2007: ‘(Revision of IEEE Standard 802.11-1999)’, Std., 2007.
    19. 19)
      • 16. Abdullah, N., Doufexi, A., Piechocki, R.: ‘Raptor codes for infrastructure-to-vehicular broadcast services’. IEEE 74th Vehicular Technology Conf. (VTC-Fall ‘11), September 2011.
    20. 20)
      • 11. Sardari, M., Hendessi, F., Fekri, F.: ‘DMRC: dissemination of multimedia in vehicular networks using rateless codes’. IEEE INFOCOM Workshops 2009, June 2009, pp. 16.
    21. 21)
      • 2. UK Department for Transport: ‘The eddington transport study’, 2006. Available at: http://www.webarchive.nationalarchives.gov.uk/+/http://www.dft.gov.uk/about/strategy/transportstrategy/eddingtonstudy/reportbychapters.
    22. 22)
      • 9. ETSI TR 102 638: ‘Intelligent Transport Systems (ITS), Vehicular Communications (VC), Basic Set of Applications, Definitions’, Std., Rev. 1.1, June 2009. Available at: http://www.etsi.org/deliver/etsi_tr/102600_102699/102638/01.01.01_60/tr_102638v010101p.pdf.
    23. 23)
      • 26. Matolak, D., Sen, I., Xiong, W., Yaskoff, N.: ‘5 GHz wireless channel characterization for vehicle to vehicle communications’. IEEE Military Communications Conf. (MILCOM ‘05), 2005, vol. 5, pp. 30163022.
    24. 24)
      • 10. C2C-CC: ‘Car to car communication consortium manifesto: overview of the c2c-cc system’, 2007.
    25. 25)
      • 20. 3GPP TS 26.346: ‘Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs’, Std., Rev. 9.3.0, June 2010. Available at: http://www.3gpp.org/ftp/Specs/html-info/26346.htm.
    26. 26)
      • 14. Yousefi, S., Chahed, T., Moosavi, M., Zayer, K.: ‘Comfort applications in vehicular ad hoc networks based on fountain coding’. IEEE 71st Vehicular Technology Conf. (VTC-Spring ‘10), May 2010.
    27. 27)
      • 15. Wu, C., Li, B.: ‘rStream: resilient and optimal peer-to-peer streaming with rateless codes’, IEEE Trans. Parallel Distrib. Syst., 2008, 19, (1), pp. 7792 (doi: 10.1109/TPDS.2007.1119).
    28. 28)
      • 32. Karp, B., Kung, H.T.: ‘GPSR: greedy perimeter stateless routing for wireless networks’. Proc. Sixth Annual Int. Conf. Mobile computing and networking (MobiCom ‘00), 2000, pp. 243254.
    29. 29)
      • 36. Guo, T., Carrasco, R.: ‘Crbar: cooperative relay-based auto rate mac for multirate wireless networks’, IEEE Trans. Wirel. Commun., 2009, 8, (12), pp. 59385947 (doi: 10.1109/TWC.2009.12.081308).
    30. 30)
      • 6. Shivaldova, V., Maier, G., Smely, D., et al: ‘Performance evaluation of ieee 802.11p infrastructure-to-vehicle tunnel measurements’. Proc. Seventh Int. Wireless Communications and Mobile Computing Conf. (IWCMC), July 2011, pp. 848852.
    31. 31)
      • 42. Hafeez, K., Zhao, L., Liao, Z., Ma, B.: ‘Performance analysis of broadcast messages in VANETs safety applications’. IEEE Global Telecommunications Conf. (GLOBECOM ‘2010), December 2010, pp. 15.
    32. 32)
      • 27. Sklar, B.: ‘Digital communications: fundamentals and applications’ (Prentice-Hall, 2001, 2nd edn.).
    33. 33)
      • 3. IEEE 802.11p-2010: ‘Amendment to IEEE Std 802.11-2007: Wireless Access in Vehicular Environments (WAVE)’, Std., July 2010.
    34. 34)
      • 7. Cheng, H.T., Shan, H., Zhuang, W.: ‘Infotainment and road safety service support in vehicular networking: from a communication perspective’, Mech. Syst. Signal Process., 2011, 25, (6), pp. 20202038 (doi: 10.1016/j.ymssp.2010.11.009).
    35. 35)
      • 5. Abdullah, N.F., Piechocki, R.J., Doufexi, A.: ‘Systematic raptor codes for safety broadcast in an unsaturated vehicular highway environment’, EURASIP J. Wirel. Commun. Netw., 2012, 2012, pp. 119 (doi: 10.1186/1687-1499-2012-213).
    36. 36)
      • 29. Otto, J., Bustamante, F., Berry, R.: ‘Down the block and around the corner the impact of radio propagation on intervehicle wireless communication’. Proc. 29th IEEE Int. Conf. Distributed Computing Systems (ICDCS ‘09), June 2009, pp. 605614.
    37. 37)
      • 35. Sadek, A., Liu, K., Ephremides, A.: ‘Cognitive multiple access via cooperation: protocol design and performance analysis’, IEEE Trans. Inf. Theory, 2007, 53, (10), pp. 36773696 (doi: 10.1109/TIT.2007.904784).
    38. 38)
      • 37. Li, L., Fan, Z., Kaleshi, D.: ‘Carla: Combining cooperative relaying and link adaptation for ieee 802.11 wireless networks’. IEEE 75th Vehicular Technology Conf. (VTC Spring), 2012, pp. 15.
    39. 39)
      • 21. ETSI TS 102 472: ‘Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Content Delivery Protocols’, Std., Rev. 1.2.1, December 2006. Available at: http://www.etsi.org/deliver/etsi_ts/102400_102499/102472/01.03.01_60/ts_102472v010301p.pdf.
    40. 40)
      • 41. Chen, X., Refai, H., Ma, X.: ‘Saturation performance of IEEE 802.11 broadcast scheme in Ad Hoc wireless LANs’. IEEE 66th Vehicular Technology Conf., 2007 (VTC-2007 Fall), October 2007, pp. 18971901.
    41. 41)
      • 25. Medbo, J., Schramm, P.: ‘Channel models for HIPERLAN/2 for different indoor scenarios’, ETSI EP BRAN/3ERI085B, March 1998.
    42. 42)
      • 43. FleetNet Movement Patterns (HWGui): ‘Visualizing, Evaluating and Transforming Movement Patterns of Vehicles on Highways. Available at: http://www.pi4.informatik.uni-mannheim.de/pi4.data/content/projects/hwgui/.
    43. 43)
      • 17. Abdullah, N.F., Doufexi, A., Piechocki, R.J.: ‘Multi-rate vehicular communications with systematic raptor codes in urban scenarios’. IEEE ICC Workshops, Ottawa, Canada, June 2012.
    44. 44)
      • 4. Campolo, C., Molinaro, A.: ‘Vehicle-to-roadside multihop data delivery in 802.11p/WAVE vehicular ad hoc networks’. IEEE Global Telecommunications Conf. (GLOBECOM 2010), 2010, pp. 15.
    45. 45)
      • 30. Boban, M., Tonguz, O., Barros, J.: ‘Unicast communication in vehicular ad hoc networks: a reality check’, IEEE Commun. Lett., 2009, 13, (12), pp. 995997 (doi: 10.1109/LCOMM.2009.12.091497).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2013.0461
Loading

Related content

content/journals/10.1049/iet-com.2013.0461
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading