Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Transmission of data with orthogonal frequency division multiplexing technique for communication networks using GHz frequency band soliton carrier

Transmission of data with orthogonal frequency division multiplexing technique for communication networks using GHz frequency band soliton carrier

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Microring resonators (MRRs) can be used to generate optical millimetre-wave solitons with a broadband frequency of 40–60 GHz. Non-linear light behaviours within MRRs, such as chaotic signals, can be used to generate logic codes (digital codes). The soliton signals can be multiplexed and modulated with the logic codes using an orthogonal frequency division multiplexing (OFDM) technique to transmit the data via a network system. OFDM uses overlapping subcarriers without causing inter-carrier interference. It provides both a high data rate and symbol duration using frequency division multiplexing over multiple subcarriers within one channel. The results show that MRRs support both single-carrier and multi-carrier optical soliton pulses, which can be used in an OFDM based on whether fast Fourier transform or discrete wavelet transform transmission/receiver system. Localised ultra-short soliton pulses within frequencies of 50 and 52 GHz can be seen at the throughput port of the panda system with respect to full-width at half-maximum (FWHM) and free spectrum range of 5 MHz and 2 GHz, respectively. The soliton pulses with FWHMs of 10 MHz could be generated at the drop port. Therefore, transmission of data information can be performed via a communication network using soliton pulse carriers and an OFDM technique.

References

    1. 1)
      • 49. Amiri, I.S., Khanmirzaei, M.H., Kouhnavard, M., Yupapin, P.P., Ali, J.: ‘Quantum entanglement using multi dark soliton correlation for multivariable quantum router’, in: Moran, A.M. (ed.): ‘Quantum entanglement’ (Nova Science Publisher, New York, 2012).
    2. 2)
    3. 3)
      • 32. Amiri, I.S., Alavi, S.E., Idrus, S.M., Nikoukar, A., Ali, J.: ‘IEEE 802.15.3c WPAN standard using millimeter optical soliton pulse generated by a panda ring resonator’, IEEE Photon. J., 2013, 5, (5), Article no. 7901912.
    4. 4)
      • 28. Amiri, I.S., Alavi, S.E., Ali, J.: ‘High capacity soliton transmission for indoor and outdoor communications using integrated ring resonators’, Int. J. Commun. Syst., 2013, doi: 10.1002/dac.2645.
    5. 5)
      • 36. Amiri, I.S., Afroozeh, A., Bahadoran, M., Ali, J., Yupapin, P.P.: ‘Molecular transporter system for qubits generation’, J. Teknologi, 2012, 55, pp. 155165.
    6. 6)
      • 19. Gao, Y., Wu, M., Du, W.: ‘Performance research of modulation for optical wireless communication system’, J. Netw., 2011, 6, (8), pp. 10991105.
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 58. Ahmed, E., Aziz, W., Abbas, G., Saleem, S., Islam, Q.: ‘Channel estimation for OFDM system using training sequence algorithms’, Adv. Electr. Eng. Syst., 2012, 1, (3), pp. 140145.
    11. 11)
    12. 12)
      • 62. Bouziane, R., Koutsoyannis, R., Milder, P., Benlachtar, Y., Hoe, J., Glick, M., Killey, R.: ‘Optimising FFT precision in optical OFDM transceivers’, IEEE Photon. Technol. Lett., 2011, 23, (20), pp. 10411135.
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 48. Alavi, S.E., Amiri, I.S., Idrus, S.M., Supa'at, A.S.M., Ali, J.: ‘Chaotic signal generation and trapping using an optical transmission link’, Life Sci. J., 2013, 10, (9s), pp. 186192.
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 25. Amiri, I.S., Vahedi, G., Shojaei, A., Nikoukar, A., Ali, J., Yupapin, P.P.: ‘Secured transportation of quantum codes using integrated PANDA-add/drop and TDMA systems’, Int. J. Eng. Res. Technol.(IJERT), 2012, 1, (5).
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • 39. Amiri, I.S., Gifany, D., Ali, J.: ‘Ultra-short multi soliton generation for application in long distance communication’, J. Basic Appl. Sci. Res. (JBASR), 2013, 3, (3), pp. 442451.
    30. 30)
      • 17. Prasad, R.: ‘OFDM for wireless communications systems’ (Artech House, 2004).
    31. 31)
      • 50. Amiri, I.S., Shahidinejad, A., Nikoukar, A., Ali, J., Yupapin, P.: ‘A study of dynamic optical tweezers generation for communication networks’, Int. J. Adv. Eng. Technol. (IJAET), 2012, 4, (2), pp. 3845.
    32. 32)
    33. 33)
    34. 34)
      • 53. Ganapathy, R., Easwaran, M., Raj, G., Venkatesh, S., Porsezian, K.: ‘Modeling and evaluation of radio over fiber communication systems on employing nanophotonic devices’. Proc. Int. Conf. Nanoscience, Engineering and Technology (ICONSET), 2011, pp. 181186.
    35. 35)
    36. 36)
    37. 37)
      • 63. Ghosh, S., Bass, A.: ‘Implementation of digital video broadcasting-terrestrial (DVB-T) using orthogonal frequency division multiplexing (OFDM) on physical media dependent sub layer’, Int. J. Comput. Appl., 2012, 44, (22), pp. 2025.
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
      • 47. Amiri, I.S., Afroozeh, A., Ali, J., Yupapin, P.P.: ‘Generation of quantum codes using up and down link optical soliton’, J. Teknologi (Sci. Eng.), 2012, 55, pp. 97106.
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
      • 51. Deepak, S., Chaudhary, P.: ‘LDPC code based varying data rate communication systems with improved OFDM-MIMO technology’, Int. J. Adv. Comput. Inf. Technol., 2012, 1, pp. 316326.
    50. 50)
      • 45. Amiri, I.S., Nikoukar, A., Ali, J.: ‘Quantum information generation using optical potential well’. Proc. Int. Conf. Network Technologies & Communications (NTC) Conference, Singapore, 2010–2011.
    51. 51)
      • 10. Sreekanth, N., GiriPrasad, M.: ‘BER analysis of mitigation of ICI through ICI self cancellation scheme in OFDM systems’, System, 2012, 2, (3).
    52. 52)
    53. 53)
    54. 54)
      • 12. Raajan, N., Philomina, A., Priya, M., et al: ‘Improved OFDM system using inter symbol pilot aided synchronization in asynchronous mode of transmission’, Proc. Int., 2012, pp. 652656.
    55. 55)
      • 4. Gomes, N.J., Monteiro, P.P., Gameiro, A.: ‘Next generation wireless communications using radio over fiber’ (John Wiley & Sons, 2012).
    56. 56)
      • 14. Chrabieh, R., Soliman, S.S., Dural, O.: ‘Adaptive loading for orthogonal frequency division multiplex (OFDM) communication systems’. EP Patent 2,371,080, 2011.
    57. 57)
      • 6. Shukla, P.K., Singh, R.: ‘Optimization of power in optical OFDM system’, Optimization, 2012, 3, (1), pp. 171174.
    58. 58)
    59. 59)
      • 55. Chaiyasoonthorn, S., Limpaibool, P., Mitatha, S., Yupapin, P.P.: ‘High capacity mobile ad hoc network using THz frequency enhancement’, Int. J. Commun. Netw. Syst. Sci., 2010, 3, (12), pp. 954961.
    60. 60)
    61. 61)
    62. 62)
    63. 63)
      • 31. Amiri, I.S., Ali, J.: ‘Picosecond soliton pulse generation using a PANDA system for solar cells fabrication’, J. Comput. Theor. Nanosci. (CTN), 2014, 11, (3), pp. 19.
    64. 64)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2013.0077
Loading

Related content

content/journals/10.1049/iet-com.2013.0077
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address