http://iet.metastore.ingenta.com
1887

Energy and cost implications of a traffic aware and quality-of-service constrained sleep mode mechanism

Energy and cost implications of a traffic aware and quality-of-service constrained sleep mode mechanism

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study considers the theoretical and realistic performance of a traffic aware sleep mode mechanism in the cellular network. The study devises a sleep mode mechanism that maximises the energy saving of the network, while maintaining both the user throughput and reliability performance. The analysis combines recent developments in stochastic geometry and packet data modelling, as well as a simulation of a real cellular network. The main contribution is to show that accurate theoretical modelling of realistic network data can allow deterministic sleep mode triggers to be devised. This is shown to be highly applicable to a real network, reducing energy consumption by 15–60% throughout a day and the annual operational expenditure by 4%.

References

    1. 1)
      • 1. Xiong, C., Li, Y., Zhang, S., Chen, Y., Xu, S.: ‘Energy- and spectral- efficiency tradeoff in downlink OFDMA networks’, IEEE Trans. Wirel. Commun., 2011, 10, (11), pp. 38743885 (doi: 10.1109/TWC.2011.091411.110249).
    2. 2)
      • 2. Saker, L., Elayoubi, S., Combes, R., Chahed, T.: ‘Optimal control of wake Up mechanisms of femtocells in heterogeneous networks’, IEEE J. Sel. Areas Commun. (JSAC), 2012, 30, (3), pp. 664672 (doi: 10.1109/JSAC.2012.120415).
    3. 3)
      • 3. Guo, W., O'Farrell, T.: ‘Capacity-energy-cost tradeoff for small-cell networks’. IEEE Vehicular Technology Conf., May 2012, pp. 15.
    4. 4)
      • 4. Tombaz, S., Monti, P., Wang, K., Vastberg, A., Forzati, M., Zander, J.: ‘Impact of backhauling power consumption on the deployment of heterogeneous mobile networks’. IEEE Global Telecommunications Conf. (Globecom), December 2011, pp. 15.
    5. 5)
      • 5. Wang, R., Thompson, J.S., Haas, H., Grant, P.M.: ‘Sleep mode design for green base stations’, IET Commun., 2011, 5, (18), pp. 26062616 (doi: 10.1049/iet-com.2011.0104).
    6. 6)
      • 6. Conte, A., Feki, A., Chiaraviglio, L., Ciullo, D., Meo, M., Marsan, M.: ‘Cell wilting and blossoming for energy efficiency’. IEEE Wireless Communications, 2011, 18, (5), pp. 5057.
    7. 7)
      • 7. Niu, Z., Wu, Y., Gong, J., Yang, Z.: ‘Cell zooming for cost-efficient green cellular networks’, Commun. Mag., IEEE, 2010, 48, (11), pp. 7479 (doi: 10.1109/MCOM.2010.5621970).
    8. 8)
      • 8. Haenggi, M., Andrews, J.G., Baccelli, F., Dousse, O., Franceschetti, M.: ‘Stochastic geometry and random graphs for the analysis and design of wireless networks’, IEEE J. Sel. Areas Commun. (JSAC), 2009, 27, (7), pp. 10291046 (doi: 10.1109/JSAC.2009.090902).
    9. 9)
      • 9. Wang, S., Guo, W., O'Farrell, T.: ‘Two tier networks with frequency selective surface’. IEEE Int. Conf. High Performance Computing and Communications (HPCC), June 2012.
    10. 10)
      • 10. Guo, W., O'Farrell, T.: ‘Dynamic cell expansion with self-organizing cooperation’, IEEE J. Sel. Areas Commun. (JSAC), 2013, 31, (5), pp. 851860 (doi: 10.1109/JSAC.2013.130504).
    11. 11)
      • 11. Haenggi, M.: ‘Stochastic geometry for wireless networks’ (England, UK, Cambridge University Press, 2012).
    12. 12)
      • 12. 3GPP: ‘Further advancements for E-UTRA physical layer aspects (Rel.9),’ 3GPP TR36.814v9, Technical report, March2010.
    13. 13)
      • 13. Guo, W., Wang, S., Chu, X., Chen, Y., Song, H., Zhang, J.: ‘Automated small-cell deployment for heterogeneous cellular networks’, IEEE Commun. Mag., 2013, 51, (5), pp. 4653 (doi: 10.1109/MCOM.2013.6515046).
    14. 14)
      • 14. Laner, M., Svoboda, P., Schwarz, S., Rupp, M.: ‘Users in cells: a data traffic analysis’. IEEE Wireless Communications and Networking Conf. (WCNC), April 2012, pp. 30633068.
    15. 15)
      • 15. Auer, G., Giannini, V., Godor, I., et al: ‘Cellular energy efficiency evaluation framework’. IEEE Vehicular Technology Conf. (VTC Spring), May 2011, pp. 16.
    16. 16)
      • 16. Furuskar, A., Almgren, M., Johansson, K.: ‘An infrastructure cost evaluation of single- and multi-access networks with heterogeneous traffic density’. IEEE Vehicular Technology Conf., May 2005, pp. 31663170.
    17. 17)
      • 17. Oh, E., Krishnamachari, B.: ‘Energy savings through dynamic base station switching in cellular wireless access networks’. IEEE Global Telecommunications Conf. (GLOBECOM), December 2010, pp. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2013.0011
Loading

Related content

content/journals/10.1049/iet-com.2013.0011
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address