access icon free Joint and distributed scheduling with dynamic power control in multicell orthogonal frequency division multiple access networks

This study addresses the issue of intercell interference coordination in a multicell orthogonal frequency division multiple access network with universal frequency reuse, which aims at improving the network spectral efficiency, especially for the cell edge areas. According to different degrees of information sharing within the engaged network, both a joint and a distributed solution are proposed respectively trying to determine the most appropriate power control strategy along with the user scheduling policy. The joint power control and user scheduling scheme with full access to the network information is capable of gaining considerable enhancement on the network capacity and also a performance improvement for users suffering from strong intercell interferences. The distributed scheme with the same purpose manages to adapt the power control and user scheduling strategy on the basis of dynamic programming with respect to both current and future utility of the network with only local information available. Numerical results have shown the advantages of the proposed schemes in achieving better spectral efficiency under both joint and distributed circumstances.

Inspec keywords: frequency division multiple access; dynamic programming; OFDM modulation; power control; numerical analysis; radiofrequency interference; frequency allocation; cellular radio

Other keywords: distributed scheduling; dynamic programming; intercell interference coordination; dynamic power control; information sharing; local information; multicell orthogonal frequency division multiple access networks; network spectral efflciency; joint scheduling; network capacity; universal frequency reuse; cell edge areas; performance improvement; user scheduling policy

Subjects: Power and energy control; Optimisation techniques; Control applications in radio and radar; Electromagnetic compatibility and interference; Modulation and coding methods; Multiple access communication; Other numerical methods; Optimisation techniques; Mobile radio systems; Other numerical methods

References

    1. 1)
      • 1. Gesbert, D., Hanly, S., Huang, H., et al: ‘Multicell-MIMO cooperative networks: a new look at interference’, IEEE J. Sel. Area Commun., 2010, 28, (9), pp. 13801408 (doi: 10.1109/JSAC.2010.101202).
    2. 2)
      • 9. Venturino, L., Prasad, N., Wang, X.: ‘Coordinated scheduling and power allocation in downlink multicell OFDMA networks’, IEEE Trans. Veh. Technol., 2009, 58, (6), pp. 28352848 (doi: 10.1109/TVT.2009.2013233).
    3. 3)
      • 10. Kiani, S., Gesbert, D.: ‘Optimal and distributed scheduling for multicell capacity maximization’, IEEE Trans. Wirel. Commun., 2008, 7, (1), pp. 288297 (doi: 10.1109/TWC.2008.060503).
    4. 4)
      • 22. Leung, K.: ‘Power control by interference prediction for broadband wireless packet networks’, IEEE Trans. Wirel. Commun., 2002, 1, (2), pp. 256265 (doi: 10.1109/7693.994819).
    5. 5)
      • 18. Yu, W., Lui, R.: ‘Dual methods for nonconvex spectrum optimization of multicarrier systems’, IEEE Trans. Commun., 2006, 54, (7), pp. 13101322 (doi: 10.1109/TCOMM.2006.877962).
    6. 6)
      • 12. Yoon, M., Kim, M., Lee, C.: ‘Decentralized precoding algorithm with weighted SLNR for limitedly coordinated network’, IEEE Commun. Lett., 2012, 16, (3), pp. 318320 (doi: 10.1109/LCOMM.2012.010512.112037).
    7. 7)
      • 5. Yu, W., Kwon, T., Shin, C.: ‘Multicell coordination via joint scheduling, beamforming and power spectrum adaptation’. Proc. IEEE INFORCOM, April 2011, pp. 25702578.
    8. 8)
      • 13. Dahrouj, H., Yu, W.: ‘Multicell interference mitigation with joint beamforming and common message decoding’, IEEE Trans. Commun., 2011, 59, (8), pp. 22642273 (doi: 10.1109/TCOMM.2011.060911.100554).
    9. 9)
      • 6. Fallgren, M.: ‘An optimization approach to joint cell, channel and power allocation in multicell relay networks’, IEEE Trans. Wirel. Commun., 2012, 11, (8), pp. 28682875.
    10. 10)
      • 23. Kohandani, K., McAvoy, D.W., Khandani, A.K.: ‘Wireless data traffic estimation using a state-space model’, IEEE Trans. Veh. Technol., 2008, 57, (6), pp. 38853890 (doi: 10.1109/TVT.2008.923663).
    11. 11)
      • 2. Mietzner, J., Schober, R., Lampe, L., Gerstacher, W.H., Hoeher, P.A.: ‘Multiple-antenna techniques for wireless communications – a comprehensive literature survey’, IEEE Commun. Surv Tutor., 2009, 11, (2), pp. 87105 (doi: 10.1109/SURV.2009.090207).
    12. 12)
      • 8. Al Rawi, A.F., Sharif, B.S., Tsimenidis, C.C.: ‘User priority aware scheduling and dynamic resource allocation in orthogonal frequency division multiple access’, IET Commun., 2011, 5, (7), pp. 10061019 (doi: 10.1049/iet-com.2010.0141).
    13. 13)
      • 14. Zakhour, R., Gesbert, D.: ‘Optimized data sharing in multicell MIMO with finite backhaul capacity’, IEEE Trans. Signal Process., 2011, 59, (12), pp. 61026111 (doi: 10.1109/TSP.2011.2165949).
    14. 14)
      • 7. Hanly, S., Andrew, L., Thanabalasingham, T.: ‘Dynamic allocation of subcarriers and transmit powers in an OFDMA cellular network’, IEEE Trans. Inf. Theory, 2009, 52, (12), pp. 54455462 (doi: 10.1109/TIT.2009.2032822).
    15. 15)
      • 11. Gesbert, D., Kountouris, M.: ‘Rate scaling laws in multicell networks under distributed power control and user scheduling’, IEEE Trans Inf. Theory, 2011, 57, (1), pp. 234244 (doi: 10.1109/TIT.2010.2090195).
    16. 16)
      • 4. Goldsmith, A.: ‘Wireless communications’ (Cambridge University Press, 2005, 1st edn.).
    17. 17)
      • 25. Kim, S., Choi, W., Ban, T.W., Sung, D.K.: ‘Optimal rate adaptation for hybrid ARQ in time-correlated Rayleigh fading channels’, IEEE Trans. Wirel. Commun., 2011, 10, (3), pp. 968979 (doi: 10.1109/TWC.2011.011111.101027).
    18. 18)
      • 15. Calvo, E., Munoz, O., Vidal, J., Agustin, A.: ‘Downlink coordinated radio resource management in cellular networks with partial CSI’, IEEE Trans. Signal Process., 2012, 60, (3), pp. 14201431 (doi: 10.1109/TSP.2011.2177971).
    19. 19)
      • 24. Bertsekas, D.: ‘Dynamic programming and optimal control’ (Athena Scientific, 2005, 3rd edn.).
    20. 20)
      • 20. Ma, Y., Xu, Y., Zhang, D.: ‘Power allocation for orthogonal frequency division multiplexing-based cognitive radio systems with and without integral bit rate consideration’, IET Commun., 2011, 5, (5), pp. 575586 (doi: 10.1049/iet-com.2010.0193).
    21. 21)
      • 21. Zhou, K., Tat, M.: ‘Power control for uplink transmission with mobile users’, IEEE Trans. Veh. Technol., 2011, 60, (5), pp. 21172127 (doi: 10.1109/TVT.2011.2151217).
    22. 22)
      • 17. IEEE 802.16.: ‘IEEE standard for local and metropolitan area networks part 16: air interface for fixed broudband wireless access systems’. 2004.
    23. 23)
      • 16. Boyer, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, 2004).
    24. 24)
      • 3. Tse, D., Viswanath, P.: ‘Fundamentals of wireless communication’ (Cambridge University Press, 2005, 1st edn.).
    25. 25)
      • 19. Luo, Z., Zhang, S.: ‘Dynamic spectrum management: complexity and duality’, IEEE J. Sel. Top. Signal Process., 2008, 2, (1), pp. 5773 (doi: 10.1109/JSTSP.2007.914876).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2012.0823
Loading

Related content

content/journals/10.1049/iet-com.2012.0823
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading