access icon free Efficient complex radial basis function model for multiuser detection in a space division multiple access/multiple-input multiple-output–orthogonal frequency division multiplexing system

An adaptive multiuser detection (MUD) technique using the complex radial basis function (CRBF) network is proposed for space division multiple access–orthogonal frequency division multiplexing (SDMA–OFDM) system. Among various MUDs, the linear minimum mean-square error (MMSE) MUD suffers from poor performance and the maximum likelihood (ML) detector is restricted by high computational complexity. Hence, the cost function minimisation-based detector like minimum symbol error rate (MSER) is preferred because of significant performance gain over MMSE MUD and complexity gain over ML detector. Moreover, the MSER detector also has a potential of surviving in overload scenario, where the number of users are more than that of the number of receiving antennas. However, in all these techniques, the requirement of channel estimation adds an extra complexity whereas, the proposed CRBF detector approximates the channel parameters in training phase and detects signals in testing phase. It also has low complexity, better performance compared with MSER MUD and also supports overload scenario. Each neuron in the proposed CRBF network is assembled with ‘sech’ activation function, as this function can do better complex non-linear mapping than Gaussian activation. The simulation study and performance evaluation of CRBF MUD is investigated, considering both data and image transmission.

Inspec keywords: mean square error methods; maximum likelihood estimation; space division multiple access; radial basis function networks; wireless channels; computational complexity; channel estimation; Gaussian processes; MIMO communication; telecommunication computing

Other keywords: MMSE; CRBF network; maximum likelihood detector; data transmission; space division multiple access-multiple-input multiple-output-orthogonal frequency division multiplexing system; testing phase; channel estimation; computational complexity; efficient complex radial basis function model; linear minimum mean-square error; minimum symbol error rate; SDMA-OFDM system; MUD technique; image transmission; minimisation based detector; Gaussian activation; ML detector; training phase; adaptive multiuser detection; complex nonlinear mapping; channel parameters; receiving antennas; complex radial basis function; MSER; signal detection

Subjects: Other topics in statistics; Communication channel equalisation and identification; Neural computing techniques; Multiple access communication; Interpolation and function approximation (numerical analysis); Communications computing; Computational complexity; Radio links and equipment; Interpolation and function approximation (numerical analysis); Other topics in statistics

References

    1. 1)
      • 1. Hanzo, L., Munster, M., Choi, B.J., Keller, T.: ‘OFDM and MC-CDMA for broadband multi-user communications, WLANs and broadcasting’ (IEEE Press/Wiley Publications, West Sussex, England, 2003).
    2. 2)
      • 2. Vandenameele, L., Perre, V.D., Engels, M., Gyselinckx, B., Man, H.D.: ‘A combined OFDM/SDMA approach’, IEEE J. Sel. Areas Commun., 2000, 18, (11), pp. 23122321 (doi: 10.1109/49.895036).
    3. 3)
      • 21. Ko, K.B., Choi, S., Kang, C., Hong, D.: ‘RBF multiuser detector with channel estimation capability in a synchronous MC-CDMA system’, IEEE Trans. Neural Netw., 2001, 12, (6), pp. 15361539 (doi: 10.1109/72.963794).
    4. 4)
      • 16. Haris, P.A., Gopinathan, E., Ali, C.K.: ‘Performance of some metaheuristic algorithms for multiuser detection in TTCM-assisted rank-deficient SDMA-OFDM system’, EURASIP J. Wirel. Commun. Netw., 2010, 2010, (112), pp. 111 doi:10.1155/2010/473435.
    5. 5)
      • 12. Alias, M.Y., Samingan, A.K., Chen, S., Hanzo, L.: ‘Multiple antenna aided OFDM employing minimum bit error rate multiuser detection’, IEEE Electron. Lett., 2003, 39, (24), pp. 17691770 (doi: 10.1049/el:20031105).
    6. 6)
      • 3. Verdu, S.: ‘Multiuser detection’ (Cambridge University Press, Cambridge, UK, 1998).
    7. 7)
      • 14. Chen, S., Livingstone, A., Hanzo, L.: ‘Minimum bit-error rate design for space–time equalization-based multiuser detection’, IEEE Trans. Commun., 2006, 54, (5), pp. 824832 (doi: 10.1109/TCOMM.2006.873999).
    8. 8)
      • 24. Zheng, Z.W.: ‘Receiver design for uplink multiuser code division multiple access communication system based on neural network’, Wirel. Pers. Commun., 2009, 53, (1), pp. 6779 (doi: 10.1007/s11277-009-9671-x).
    9. 9)
      • 6. Kim, K.J., Yue, J., Iltis, R.A., Gibson, J.D.: ‘A QRD-M/Kalman filter-based detection and channel estimation algorithm for MIMO-OFDM systems’, IEEE Trans. Wirel. Commun., 2005, 4, (2), pp. 710721 (doi: 10.1109/TWC.2004.842951).
    10. 10)
      • 28. Savitha, R., Suresh, S., Sundararajan, N.: ‘Complex-valued function approximation using a fully complex-valued RBF (FC-RBF) learning algorithm’. Int. Joint Conf. Neural Networks, 2009, pp. 28192825.
    11. 11)
      • 23. Shayesteh, M.G., Amindavar, H.: ‘Neural networks for multiuser detection of signals in DS/CDMA systems’, Neural Comput. Appl., 2003, 11, (3), pp. 178190.
    12. 12)
      • 18. Zhang, J., Chen, S., Mu, X., Hanzo, L.: ‘Turbo multi-user detection for OFDM/SDMA systems relying on differential evolution aided iterative channel estimation’, IEEE Trans. Commun., 2012, 60, (6), pp. 16211633 (doi: 10.1109/TCOMM.2012.032312.110400).
    13. 13)
      • 9. Damen, M., Meraim, K.A., Belfiore, J.C.: ‘Generalized sphere decoder for asymmetrical space-time communication architecture’, IEEE Electron. Lett., 2000, 36, (2), pp. 166167 (doi: 10.1049/el:20000168).
    14. 14)
      • 19. Zhang, J., Chen, S., Mu, X., Hanzo, L.: ‘Differential evolution algorithm aided minimum symbol error rate multi-user detection for multi-user OFDM/SDMA system’. IEEE Vehicular Technology Conf. (VTC Spring), 2012, pp. 15.
    15. 15)
      • 15. Jiang, M., Hanzo, L.: ‘Genetically enhanced TTCM assisted MMSE multi-user detection for SDMA-OFDM’. Proc. IEEE 60th Vehicular Technology Conf., 2004, vol. 3, pp. 19541958.
    16. 16)
      • 25. Taspinar, N., Cicek, M.: ‘Neural network based receiver for multiuser detection in MC-CDMA systems’, Wirel. Pers. Commun., 2013, 68, (2), pp. 463472 (doi: 10.1007/s11277-011-0462-9).
    17. 17)
      • 27. Savitha, R., Vigneswaran, S., Suresh, S., Sundararajan, N.: ‘Adaptive beamforming using complex-valued radial basis function neural networks’. IEEE Region Conf. – TENCON, 2009, pp. 16.
    18. 18)
      • 8. Arar, M., Yongacoglu, A.: ‘Efficient detection algorithm for 2N × 2N MIMO systems using alamouti code and QR decomposition’, IEEE Commun. Lett., 2006, 10, (12), pp. 819821 (doi: 10.1109/LCOMM.2006.060953).
    19. 19)
      • 31. Sun, Y., Xiong, Z.: ‘Progressive image transmission over space-time coded OFDM-based MIMO system with adaptive modulation’, IEEE Trans. Mobile Comput., 2006, 5, (8), pp. 10161028 (doi: 10.1109/TMC.2006.120).
    20. 20)
      • 4. Wolniansky, P.W., Foschini, G.J., Golden, G.D., Valenzuela, R.A.: ‘V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel’. Int. Symp.Signals, Systems, and Electronics, 1998, pp. 295300.
    21. 21)
      • 5. Foschini, G.J., Gans, M.J.: ‘On limits of wireless communications in a fading environment when using multiple antennas’, Wirel. Pers. Commun., 1998, 6, pp. 311335 (doi: 10.1023/A:1008889222784).
    22. 22)
      • 26. Savitha, R., Suresh, S., Sundararajan, N.: ‘A full complex-valued radial basis function network and its learning algorithm’, Int. J. Neural Syst., 2009, 19, (4), pp. 253267 (doi: 10.1142/S0129065709002026).
    23. 23)
      • 10. Hochwald, B., ten Brink, S.: ‘Achieving near-capacity on a multiple-antenna channel’, IEEE Trans. Commun., 2003, 51, (3), pp. 389399 (doi: 10.1109/TCOMM.2003.809789).
    24. 24)
      • 20. Haykin, S.: ‘Neural networks’ (Pearson Education Publications, Singapore, 1999).
    25. 25)
      • 30. Song, J., Liu, K.J.R.: ‘Robust progressive image transmission over OFDM system using space-time block codes’, IEEE Trans. Multimedia, 2002, 4, (3), pp. 394406 (doi: 10.1109/TMM.2002.802845).
    26. 26)
      • 17. Haris, P.A., Gopinathan, E., Ali, C.K.: ‘Artificial bee colony and Tabu search enhanced TTCM assisted MMSE multi-user detectors for rank deficient SDMA-OFDM system’, Wirel. Pers. Commun., 2012, 65, (2), pp. 425442 (doi: 10.1007/s11277-011-0264-0).
    27. 27)
      • 11. El-Khamy, M., Vikalo, H., Hassibi, B., McEliece, R.J.: ‘Performance of sphere decoding of block codes’, IEEE Trans. Commun., 2009, 57, (10), pp. 29402950 (doi: 10.1109/TCOMM.2009.10.080402).
    28. 28)
      • 13. Alias, M.Y., Chen, S., Hanzo, L.: ‘Multiple-antenna-aided OFDM employing genetic-algorithm-assisted minimum bit error rate multiuser detection’, IEEE Trans. Veh. Technol., 2005, 54, (5), pp. 17131721 (doi: 10.1109/TVT.2005.851303).
    29. 29)
      • 29. Said, A., Pearlman, A.A.: ‘A new, fast, and efficient image codec based on set partitioning in hierarchical trees’, IEEE Trans. Circuits Syst. Video Technol., 1996, 6, (3), pp. 243250 (doi: 10.1109/76.499834).
    30. 30)
      • 7. Kim, J.S., Moon, S.H., Lee, I.: ‘A new reduced complexity ML detection scheme for MIMO systems’, IEEE Trans. Commun., 2010, 58, (4), pp. 13021310 (doi: 10.1109/TCOMM.2010.04.080450).
    31. 31)
      • 22. Chuah, T.C., Sharif, B.S., Hinton, O.R.: ‘Robust CDMA multiuser detection using a neural-network approach’, IEEE Trans. Neural Netw., 2002, 13, (6), pp. 15321539 (doi: 10.1109/TNN.2002.804310).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2012.0688
Loading

Related content

content/journals/10.1049/iet-com.2012.0688
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading