Your browser does not support JavaScript!

Optimal power allocation for green cognitive radio: fractional programming approach

Optimal power allocation for green cognitive radio: fractional programming approach

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the problem of determining the power allocation that maximises the energy efficiency of cognitive radio network is investigated as a constrained fractional programming problem. The energy-efficient fractional objective is defined in terms of bits per Joule per Hertz. The proposed constrained fractional programming problem is a non-linear non-convex optimisation problem. The authors first transform the energy-efficient maximisation problem into a parametric optimisation problem and then propose an iterative power allocation algorithm that guarantees ε-optimal solution. A proof of convergence is also given for the ε-optimal algorithm. The proposed ε-optimal algorithm provide a practical solution for power allocation in energy-efficient cognitive radio networks. In simulation results, the effect of different system parameters (interference threshold level, number of primary users and number of secondary users) on the performance of the proposed algorithms are investigated.


    1. 1)
      • 10. Khirallah, C., Thompson, J.S., Rashvand, H.: ‘Energy and cost impacts of relay and femtocell deployments in long-term-evolution advanced’, IET Commun., 2011, 5, (18), pp. 26172628 (doi: 10.1049/iet-com.2011.0111).
    2. 2)
      • 20. Prabhu, R., Daneshrad, B.: ‘Energy-efficient power loading for a MIMO-SVD system and its performance in flat fading’. Proc. IEEE Globalcom, 2010.
    3. 3)
      • 27. Goldsmith, A.: ‘Wireless communications’ (Cambridge University Press, 2005).
    4. 4)
      • 23. Chu, F.-S., Chen, K.-C., Fettweis, G.: ‘Green resource allocation to minimize receiving energy in OFDMA cellular systems’, IEEE Commun. Lett., 2012, 16, (2), pp. 372374 (doi: 10.1109/LCOMM.2012.010512.2339).
    5. 5)
      • 6. Koutitas, G.: ‘Green network planning of single frequency networks’, IEEE Trans. Broadcast., 2010, 56, (4), pp. 541550 (doi: 10.1109/TBC.2010.2056252).
    6. 6)
      • 11. Suarez, L., Nuaymi, L., Bonnin, J.-M.: ‘An overview and classification of research approaches in green wireless networks’, EURASIP J. Wirel. Commun. Netw., 2012, pp. 118.
    7. 7)
      • 2. Han, C., Harrold, T., Armour, S., et al: ‘Green radio: radio techniques to enable energy-efficient wireless networks’, IEEE Commun. Mag., 2011, 49, (6), pp. 4654 (doi: 10.1109/MCOM.2011.5783984).
    8. 8)
      • 24. Li, C., Song, S.H., Zhang, J., Letaief, K.B.: ‘Maximizing energy efficiency in wireless networks with a minimum average throughput requirement’. Proc. IEEE WCNC, 2012.
    9. 9)
      • 1. Fehske, A., Fettweis, G., Malmodin, J., Biczk, G.: ‘The global footprint of mobile communications: the ecological and economic perspective’, IEEE Commun. Mag., 2011, 49, (8), pp. 5562 (doi: 10.1109/MCOM.2011.5978416).
    10. 10)
      • 22. Wang, B., Wu, Y., Han, F., Yang, Y.-H., Liu, K.J.R.: ‘Green wireless communications: a time-reversal paradigm’, IEEE J. Sel. Areas Commun., 2011, 29, (8), pp. 16981710 (doi: 10.1109/JSAC.2011.110918).
    11. 11)
      • 17. Luah, A.J., Tan, C.K.: ‘A Nash-based power control game for green communications via cognitive radio networks’. Proc. IEEE Conf. on Sustainable Utilization and Development in Engineering and Technology, 2012.
    12. 12)
      • 4. Li, G.Y., Xu, Z., Yang, C., et al: ‘Energy-efficiet wireless communications: tutorial, survey, and open issues’, IEEE Wirel. Commun. Mag., 2011, 18, (6), pp. 2835 (doi: 10.1109/MWC.2011.6108331).
    13. 13)
      • 26. Hanif, M.F., Smith, P.J.: ‘On the statistics of cognitive radio capacity in shadowing and fast fading environments’, IEEE Trans. Wirel. Commun., 2010, 9, (2), pp. 844852 (doi: 10.1109/TWC.2010.02.090864).
    14. 14)
      • 5. Han, C., Armour, S.: ‘Energy efficient radio resource management strategies for green radio’, IET Commun., 2011, 5, (18), pp. 26292639 (doi: 10.1049/iet-com.2011.0113).
    15. 15)
      • 15. Renzo, M.D., Alonso, L., Fitzek, F.H.P., et al: ‘GREENET – an early stage training network in enabling technologies for green radio’. Proc. 73rd IEEE VTC Spring, 2011.
    16. 16)
      • 18. Chen, X., Zhao, Z., Zhang, H.: ‘Green transmit power assignment for cognitive radio networks by applying multi-agent Q-learning approach’. Proc. IEEE Wireless Technology Conf., 2010.
    17. 17)
      • 12. Djurisic, M.P., Stovrag, E., Delibasic, M.I.: ‘Fundamental optimization criteria for Green wireless communications’. Proc. IEEE MIPRO, 2012.
    18. 18)
      • 16. Palicot, J., Louet, Y., Mroue, M.: ‘Peak to average power ratio sensor for green cognitive radio’. Proc. 21st IEEE PIMRC, 2010.
    19. 19)
      • 7. Son, K., Kim, H., Yi, Y., Krishnamachari, B.: ‘Base station operation and user association mechanisms for energy-delay tradeoffs in green cellular networks’, IEEE J. Sel. Areas Commun., 2011, 29, (8), pp. 15251536 (doi: 10.1109/JSAC.2011.110903).
    20. 20)
      • 19. Ng, D.W.K., Lo, E.S., Schober, R.: ‘Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas’, IEEE Trans. Wirel. Commun., 2012, 11, pp. 32923304 (doi: 10.1109/TWC.2012.072512.111850).
    21. 21)
      • 8. Xiong, C., Li, G.Y., Zhang, S., Chen, Y., Xu, S.: ‘Energy- and spectral-efficiency tradeoff in downlink OFDMA networks’, IEEE Trans. Wirel. Commun., 2011, 10, (11), pp. 38743886 (doi: 10.1109/TWC.2011.091411.110249).
    22. 22)
      • 28. Ko, G., Franklin, A.A., You, S., Pak, J., Song, M., Kim, C.-J.: ‘Channel management in IEEE 802.22 WRAN Systems’, IEEE Commun. Mag., 2010, 48, (16), pp. 8894 (doi: 10.1109/MCOM.2010.5560592).
    23. 23)
      • 30. Dinkelbach, W.: ‘On the nonlinear fractional programming’, J. Manage. Sci., 1967.
    24. 24)
      • 25. Feng, W., Alshaer, H., Elmirghani, J.M.H.: ‘Green information and communication technology: energy efficiency in a motorway model’, IET Commun., 2010, 4, (7), pp. 850860 (doi: 10.1049/iet-com.2009.0153).
    25. 25)
      • 29. Zhao, Q., Sadler, B.M.: ‘A survey of dynamic spectrum access’, IEEE Signal Process. Mag., 2007, 24, (3), pp. 7989 (doi: 10.1109/MSP.2007.361604).
    26. 26)
      • 14. Yang, C., Li, J., Sheng, M., Liu, Q.: ‘Green heterogeneous networks: a cognitive radio idea’, IET Commun., 2012, 6, (13), pp. 19521959 (doi: 10.1049/iet-com.2011.0801).
    27. 27)
      • 9. Miao, G., Himayat, N., Li, G.Y., Talwar, S.: ‘Low-complexity energy-efficient scheduling for uplink OFDMA’, IEEE Trans. Commun., 2012, 60, (1), pp. 112120 (doi: 10.1109/TCOMM.2011.112811.090122).
    28. 28)
      • 13. Grace, D., Jingxin Chen, C., Jiang, T., Mitchell, P.D.: ‘Using cognitive radio to deliver ‘Green’ communications,’ cognitive radio oriented wireless networks and communications’. Proc. IEEE COWNCOM, 2009.
    29. 29)
      • 21. Isheden, C., Fettweis, G.P.: ‘Energy-efficient link adaptation with transmitter CSI’. Proc. IEEE WCNC, 2011.
    30. 30)
      • 3. Hammi, O., Kwan, A., Helaoui, M., Ghannouchi, F.M.: ‘Green power amplification systems for 3G + wireless communication infrastructure’. Proc. IEEE VTC, Fall2010.

Related content

This is a required field
Please enter a valid email address