Large-scale multiple-input–multiple-output transceiver system

Large-scale multiple-input–multiple-output transceiver system

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors propose a transceiver system for large-scale multiple-input–multiple-output (MIMO) (LSM) wireless communications. The authors present the main challenges facing such LSM system, also, they find solutions for those problems. The transmitters in this proposed downlink system uses a simple fair user scheduling based on limited-feedback algorithm with basic random precodeing algorithm. On the other side, receivers employ constrained partial group decoder to detect their desired signals. Simulation is used to evaluate sum-rate performance of this LSM downlink system against the total number of users and signal-to-noise ratio, using different number of scheduled users and with various group sizes of jointly decoded users. Numerical results interestingly show an encouraging performance for the proposed transceiver system in this study to be considered as a candidate scheme for LSM communication systems.


    1. 1)
      • 1. Kountouris, M., Gesbert, D.: ‘Robust multi-user opportunistic beamforming for sparse networks’. Signal Processing Advances in Wireless Communications, 2005 IEEE Sixth Workshop on, June 2005, vol. 11, pp. 975979.
    2. 2)
      • 2. Kumari, J.: ‘MIMO-OFDM for 4 g wireless systems’, Int. J. Eng. Sci. Technol., 2010, 2, pp. 28862889.
    3. 3)
      • 3. Rusek, F., Persson, D., Lau, B.K., et al: ‘Scaling up mimo: opportunities and challenges with very large arrays’, CoRR, vol. abs/1201.3210, 2012. Available at link:href="–3210">–3210.
    4. 4)
      • 4. Larsson, E.G., Stoica, P.: ‘Space-time block coding for wireless communications’ (Cambridge University Press, Cambridge, UK, 2003).
    5. 5)
      • 5. Ngo, H.Q., Larsson, E.G., Marzetta, T.L.: ‘Energy and spectral efficiency of very large multiuser MIMO systems’, CoRR, vol. abs/1112.3810, 2011. Available at
    6. 6)
      • 6. Huh, H., Caire, G., Papadopoulos, H.C., Ramprashad, S.A.: ‘Achieving ‘massive MIMO’ spectral efficiency with a not-so-large number of antennas’. CoRR, vol. abs/1107.3862, 2011. Available at
    7. 7)
      • 7. Cirkic, M., Larsson, E.G.: ‘Sumis: a near-optimal soft-ouput mimo detector at low and fixed complexity’. CoRR, vol. abs/1207.3316, 2012. Available at http: //
    8. 8)
      • 8. Kumar, A., Chandrasekaran, S., Chockalingam, A., Rajan, B.S.: ‘Near-optimal large-mimo detection using randomized mcmc and randomized search algorithms’. ICC. IEEE, 2011, pp. 15. Available at
    9. 9)
      • 9. Suthisopapan, P., Kasai, K., Meesomboon, A., Imtawil, V.: ‘Near capacity approaching for large mimo systems by non-binary ldpc codes with mmse detection’. CoRR, vol. abs/1203.0960, 2012. Available at
    10. 10)
      • 10. Tolga, A.G., Duman, M.: ‘Coding for MIMO communication systems’ (John Wiley and Sons, Ltd., 2007).
    11. 11)
      • 11. Weingarten, H., Steinberg, Y., Shamai, S.: ‘The capacity region of the Gaussian multiple-input multiple-output broadcast channel’, IEEE Trans. Inf. Theory, 2006, 52, (9), pp. 39363964 (doi: 10.1109/TIT.2006.880064).
    12. 12)
      • 12. Spencer, Q., Swindlehurst, A., Haardt, M.: ‘Zero-forcing methods for downlink spatial multiplexing in multiuser mimo channels’, IEEE Trans. Signal Process., 2004, 52, (2), pp. 461471 (doi: 10.1109/TSP.2003.821107).
    13. 13)
      • 13. Joham, M., Utschick, W., Nossek, J.: ‘Linear transmit processing in MIMO communications systems’, IEEE Trans. Signal Process., 2005, 53, (8), pp. 27002712 (doi: 10.1109/TSP.2005.850331).
    14. 14)
      • 14. Elshokry, A.M.: ‘Complexity and performance evaluation of detection schemes for spatial multiplexing mimo systems’. Master's thesis, Faculty of Engineering, Islamic University Gaza, 2010.
    15. 15)
      • 15. Mohammed, S., Chockalingam, A., Sundar Rajan, B.: ‘A low-complexity precoder for large multiuser miso systems’. Vehicular Technology Conf., 2008. VTC Spring 2008. IEEE, May 2008, pp. 797801.
    16. 16)
      • 16. Kim, Y., Chae, H., Kim, K., Yang, J., Kim, D.K.: ‘Performance analysis of random beamforming for mimo broadcast channel: outage probability approach’. Proc. Third 2008 Int. Conf. Convergence and Hybrid Information Technology, 2008.
    17. 17)
      • 17. Tajer, A., Wang, X.: ‘Opportunistic multi-antenna downlink transmission with finite-rate feedback’. Proc. 46th Annual Allerton Conf. Communication, Control, and Computing, 2008, September 2008, pp. 7986.
    18. 18)
      • 18. Wang, X., Tajer, A.: ‘Downlink multiuser mimo with limited feedback orthogonal random beamforming’ (Department of Electrical Engineering, Columbia University, 2008).
    19. 19)
      • 19. Torabzadeh, M., Ajib, W.: ‘Packet scheduling and fairness for multiuser MIMO systems’, IEEE Trans. Veh. Technol., 2010, 59, (3), pp. 13301340 (doi: 10.1109/TVT.2009.2037969).
    20. 20)
      • 20. Sun, H., Wang, D., Xie, Y., You, X.: ‘Performance analysis of multi-user scheduling over time-varying channel’. Communications, Circuits and Systems, 2008. ICCCAS 2008. Int. Conf., May 2008, pp. 144147.
    21. 21)
      • 21. Gong, C., Ming, Z.: ‘Linear programming in multi-user scheduling for MIMO broadcast channels’. Wireless, Mobile and Multimedia Networks, 2006 IET Int. Conf., November 2006, pp. 14.
    22. 22)
      • 22. Lau, V., Liu, Y., Chen, T.A.: ‘Optimal multi-user space time scheduling for wireless communications’. Vehicular Technology Conf., 2002. Proc. VTC 2002-Fall. 2002 IEEE 56th, 2002, vol. 4, pp. 19391942.
    23. 23)
      • 23. Airy, M., Shakkattai, S., Heath, Jr., R.W.: ‘Spatially greedy scheduling in multi-user MIMO wireless systems’. Signals, Systems and Computers, 2003. Conf. Record of the Thirty-Seventh Asilomar Conf., November 2003, vol. 1, pp. 982986.
    24. 24)
      • 24. Edfors, O., Sandell, M., van de Beek, J.-J., Wilson, S., Ola Borjesson, P.: ‘OFDM channel estimation by singular value decomposition’. Vehicular Technology Conf., 1996. ‘Mobile Technology for the Human Race’, IEEE 46th, April–May 1996, vol. 2, pp. 923927.
    25. 25)
      • 25. Tajer, A., Prasad, N., Wang, X.: ‘Beamforming and rate allocation in MISO cognitive radio networks’, IEEE Trans. Signal Process., 2010, 58, (1), pp. 362377 (doi: 10.1109/TSP.2009.2031280).
    26. 26)
      • 26. Gong, C., Tajer, A., Wang, X.: ‘Interference channel with constrained partial group decoding’, IEEE Trans. Commun., 2011, 59, (11), pp. 30593071 (doi: 10.1109/TCOMM.2011.082111.100624).
    27. 27)
      • 27. Gong, C., Tajer, A., Wang, X.: ‘Interference channel with constrained partial group decoding’ (Electrical Engineering DepartmentColumbia University, New York, NY) Report, 2010.

Related content

This is a required field
Please enter a valid email address