http://iet.metastore.ingenta.com
1887

Physical layer assist authentication technique for smart meter system

Physical layer assist authentication technique for smart meter system

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The study introduces the novel message authentication schemes for the smart meter system, where the symmetric cryptography-based physical layer-assisted message authentication (PLAA) scheme and the public key infrastructure- based PLAA scheme are introduced. The proposed schemes integrate the conventional message authentication schemes and the physical layer authentication mechanisms by taking advantage of temporal and spatial uniqueness in physical layer channel responses, aiming to achieve fast authentication while minimising the packet transmission overhead. The authors also verify their claims through extensive analysis and simulation via comparing with proposed PLAA scheme with traditional upper layer authentication schemes. The proposed novel schemes yield the lower time delay for authenticating each message, which can satisfy the requirement of the real-time control over the smart grid.

References

    1. 1)
      • 1. Von Dollen, D.: ‘Report to NIST on the Smart Grid Interoperability Standards Roadmap (Contract No. SB1341-09-CN-0031)’. Electric Power Research Institute, 2009.
    2. 2)
      • 2. Poovendran, R.: ‘Cyber-physical systems: close encounters between two parallel worlds’, Proc. IEEE, 2010, 98, (8), pp. 13631366.
    3. 3)
      • 3. Li, F., Qiao, W., Sun, H., Wan, H., Wang, J., Xia, Y., et al.: ‘Smart transmission grid: vision and framework’, IEEE Trans. Smart Grid, 2010, 1, (2), pp. 168177.
    4. 4)
      • 4. Cohen, F.: ‘The smarter grid’, IEEE Secur. Priv., 2010, 8, (1), pp. 6063.
    5. 5)
      • 5. Mo, Y., Kim, T.H.J., Brancik, K., Dickinson, D., Lee, H., Perrig, A., et al: ‘Cyber–physical security of a smart grid infrastructure’, Proc. IEEE, 2012, 100, (1), pp. 195209.
    6. 6)
      • 6. The NISTIR 7628: ‘Guidelines for smart grid cyber security’. The Smart Grid Interoperability Panel – Cyber Security Working Group, 2010.
    7. 7)
      • 7. McDaniel, P., McLaughlin, S.: ‘Security and privacy challenges in the smart grid’, IEEE Secur. Priv., 2009, 7, (3), pp. 7577.
    8. 8)
      • 8. Metke, A.R., Eki, R.L.: ‘Security technology for smart grid networks’, IEEE Trans. Smart Grid, 2010, 1, (1), pp. 99107.
    9. 9)
      • 9. Hero, A.O.: ‘Secure space-time communication’, IEEE Trans. Inf. Theory, 2003, 49, (12), pp. 32353249.
    10. 10)
      • 10. Li, X., Hwu, J.: ‘Using antenna array redundancy and channel diversity for secure wireless transmissions’, J. Commun., 2007, 2, (3), pp. 2432.
    11. 11)
      • 11. Nloch, M., Barros, J., Rodrigues, M.R.D.: ‘Wireless information theoretic security’, IEEE Trans. Inf. Theory, 2008, 54, (6), pp. 25152534.
    12. 12)
      • 12. Terry, N.G.: ‘Distributed Radio Relay for Communication and control with physical layer security in smart grid’. Proc. Seventh Annual Workshop on Cyber Security and Information Intelligence Research, Oak Ridge, TN, USA, October, 2011, pp. 289292.
    13. 13)
      • 13. Xiao, L., Greenstein, L., Mandayam, N., Trappe, W.: ‘Using the physical layer for wireless authentication in time-variant channels’, IEEE Trans. Wirel. Commun., 2008, 7, (7), pp. 25712579.
    14. 14)
      • 14. Yu, P.L., Baras, J.S., Sadler, B.M.: ‘Physical-layer authentication’, IEEE Trans. Inf. Forensics Secur., 2008, 3, (1), pp. 3851.
    15. 15)
      • 15. Rogers, K.M., Klump, R., Khurana, H., Aquino-Lugo, A.A., Overbye, T.J.: ‘An authenticated control framework for distributed voltage support on the smart grid’, IEEE Trans. Smart Grid, 2010, 1, (1), pp. 4047.
    16. 16)
      • 16. Lakshminarayanan, S.: ‘Authentication and authorization for smart grid application interfaces’. Proc IEEE PES Power Systems Conference & Exposition (PSCE), Phoenix, Arizona, USA, March, 2011, pp. 97101.
    17. 17)
      • 17. Fouda, M.M., Fadlullah, Z.M., Kato, N., Rongxing, L., Xuemin, S.: ‘A lightweight message authentication scheme for smart grid communications’, IEEE Trans. Smart Grid, 2011, 2, (4), pp. 675685.
    18. 18)
      • 18. Bello, P.A.: ‘Characterization of randomly time-variant linear channels’, IEEE Trans. Commun. Syst., 1963, 11, (4), pp. 360393.
    19. 19)
      • 19. Hoeher, P., Kaiser, S., Robertson, P.: ‘Pilot-symbol-aided channel estimation in time and frequency’. Proc. IEEE Global Telecomm., Phoenix, Arizona, USA, November 1997, pp. 9096.
    20. 20)
      • 20. Larsson, E.G., Liu, G., Li, J., Giannakis, G.B.: ‘Joint symbol timing and channel estimation for OFDM based WLANs’, IEEE Commun. Lett., 2001, 5, (8), pp. 325327.
    21. 21)
      • 21. Li, Y., Cimini, L., Sollenberger, N.: ‘Robust channel estimation for OFDM systems with rapid dispersive fading channels’, IEEE Trans. Commum., 1998, 46, (7), pp. 902915.
    22. 22)
      • 22. Abraham, W.: ‘Sequential tests of statistical hypotheses’, Ann. Math. Stat., 1945, 16, (2), pp. 117186.
    23. 23)
      • 23. Shin, C., Oh, M., Choi, S.: ‘Standardization of IEEE 802.15.4 g for emerging smart utility network’, OSIA Stand. Technol. Rev., 2010, 23, (3).
    24. 24)
      • 24. Mason, R., McCullough, J., Hart, D.: ‘Smart grid communications preliminary proposal’, IEEE doc. IEEE 802.15-09-0127-00-004g.
    25. 25)
      • 25. IEEE Std. 802.15.4 g/D5: ‘Part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs) – Amendment 4: physical layer specifications for low data rate wireless smart metering utility networks’, May 2011.
    26. 26)
      • 26. US National Institute of Standards and Technology (NIST): ‘DES model of operation’, Federal Information Processing Standards Publication 81 (FIPS PUB 81), 1981.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2012.0300
Loading

Related content

content/journals/10.1049/iet-com.2012.0300
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address