Capacity maximisation in eigen-multiple-input multiple-output using adaptive modulation and Reed–Solomon coding

Capacity maximisation in eigen-multiple-input multiple-output using adaptive modulation and Reed–Solomon coding

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Eigen-multiple-input multiple-output (MIMO) with water-filling gives the maximum information-theoretic capacity, but realising this maximisation is not straightforward because practical factors are omitted. Adaptive modulation and error coding are combined for finding the maximum practicable capacity (throughput of correctly detected bits) in eigen-MIMO. Quadrature amplitude modulation (QAM) is the logical choice of modulation and here Reed–Solomon (RS) coding is used. RS coding has the advantages of algorithmic simplicity, low-memory requirements, and decoder complexity, and its unique closed-form error probability makes it possible to obtain an optimal power allocation, signal constellation size(s), and code rate(s) on the eigenchannels, for the maximum practicable capacity. The proposed adaptive scheme is applied to two architectures for the encoders/decoders (CODECs): outer coding, where a single CODEC is deployed for the overall serial data; and inner coding, where there is a CODEC for each eigenchannel. The optimal power allocation is different to the water-filling used for the information-theoretic capacity. Also, simple and accurate approximations are found for the bit-error rate (BER) of a single Rayleigh channel and of a 2×2 system. Finally, a selection procedure between different system configurations is presented for obtaining the highest practicable capacity subject to either average or instantaneous output BER.


    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • Sankar, H., Sindhushayana, N., Narayana, K.R.: `Design of low density parity-check (LDPC) codes for high order constellations', Proc. Globecom, 2004, Dallas, USA, 5, p. 3113–3117.
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • Falahati, S., Svensson, A., Sternad, M., Mei, H.: `Adaptive trellis-coded modulation over predicted flat fading channels', Proc. IEEE Veh. Technol. Conf., October 2003, Orlando, USA, 3, p. 1532–1536.
    20. 20)
      • Phelps, C.I., Buehrer, R.M.: `A simplified technique for adaptive MIMO, modulation, and coding', Proc. Radio and Wireless Symp., 2009, San Diego, USA, p. 566–569.
    21. 21)
    22. 22)
      • Banani, S.A., Vaughan, R.G.: `Adaptive Reed-Solomon coding in eigen-MIMO with non-adaptive modulation', Proc. IEEE Veh. Technol. Conf., September 2011, San Francisco, USA, p. 1–6.
    23. 23)
      • Chaari, L., Fourati, M., Kamoun, L.: `Image transmission quality analysis over adaptive Reed-Solomon coding', Proc. IEEE MELECON Conf., 2010, Valletta, Malta, p. 409–414.
    24. 24)
      • Tran, T.A., Chehrazi, N., Le-Ngoc, T.: `Adaptive Reed-Solomon coding scheme for OFDM systems over frequency-selective fading channels', Proc. IEEE Veh. Technol. Conf., 2006, Montreal, Canada, p. 1–5.
    25. 25)
    26. 26)
    27. 27)
      • E.A. Lee , D.G. Messerschmitt . (1998) Digital communication.
    28. 28)
    29. 29)
    30. 30)
      • Banani, S.A., Vaughan, R.G.: `Power allocation for practicable capacity maximization in eigen-MIMO', Proc. IEEE Veh. Technol. Conf., May 2011, Taipei, Taiwan, p. 1–5.
    31. 31)
    32. 32)
      • S. Boyd , L. Vandenberghe . (2004) Convex optimization.
    33. 33)
      • R.G. Vaughan , J.B. Andersen . (2004) Channels, propagation and antennas for mobile communications.

Related content

This is a required field
Please enter a valid email address