© The Institution of Engineering and Technology
Recently, research on complex network theory and applications draws a lot of attention in both academy and industry. In mobile ad hoc networks (MANETs) area of research, a critical issue is to design the most effective topology for given problems. It is natural and significant to consider complex networks topology when optimising the MANET topology. Current works usually transform MANET or sensor network topologies into either smallworld or scalefree. However, some fundamental problems remain unsolved. Specifically, what are the average shortest path length, degree distribution and clustering characteristics of MANETs? Do MANETs have smallworld effect and scalefree property? In this work, the authors introduce complex networks theory into the context of MANET topology and study complex network properties of the MANETs to answer the above questions. The authors have theoretically analysed the degree distribution and clustering coefficient of MANETs and proposed approach to computing them. The degree distribution and clustering coefficient of MANETs are theoretically deduced from node space probability distribution on different mobility models (including but not limited to random waypoint model). Simulation results on average shortest path length, clustering coefficient and degree distribution show that in most cases MANETs do not have the smallworld effect and scalefree property.
References


1)

D.J. Watts ,
S.H. Strogatz
.
Collective dynamics of “small world” networks.
Nature
,
440 
442

2)

A.L. Barabasi ,
R. Albert
.
Emergence of scaling in random networks.
Science
,
509 
511

3)

H. Ebel ,
L.I. Mielsch ,
S. Borbholdt
.
Scalefree topology of email networks.
Phys. Rev.
,
3 ,
035103.1 
035103.4

4)

P. Sen ,
P. Dasgupta ,
A. Chatterjee ,
P.A. Sreeram ,
G. Mukherjee ,
S.S. Manna
.
Smallworld properties of the Indian railway network.
Phys. Rev. E
,
3 ,
036106.1 
036106.5

5)

J. Kleinberg
.
The smallworld phenomenon and decentralized search.
SIAM News
,
3 ,
1 
2

6)

X. Zheng ,
F.C.M. Lau ,
C.K. Tse ,
Y. He ,
S.F. Hau
.
Application of complexnetwork theories to the design of shortlength LDPC codes.
IET Commun.
,
10 ,
1569 
1577

7)

R. Albert ,
H. Jeong ,
A.L. Barabasi
.
Error and attack tolerance of complex networks.
Nature
,
378 
382

8)

A. Broder ,
R. Kumar ,
F. Maghoul
.
Graph structure in the web.
Comput. Netw.
,
309 
320

9)

F. Saffre ,
H. Jovanovic ,
C. Hoile ,
S. Nicolas
.
Scalefree topology for pervasive networks.
BT Technol. J.
,
3 ,
200 
208

10)

M. Ishizuka ,
M. Aida
.
The reliability performance of wireless sensor networks configured by powerlaw and other forms of stochastic node placement.
IEICE Trans. Commun. (Special section on Netw. Technol. Mobile Internet Syst.)
,
9 ,
2511 
2520

11)

Sharma, G., Mazumdar, R.: `Hybrid sensor networks: a small world', Proc. Sixth ACM Int. Symp. on Mobile Ad Hoc Networking and Computing (MobiHoc 05), May 2005, Urbana, USA, p. 366–377.

12)

A. Helmy
.
Small worlds in wireless networks.
IEEE Commun. Lett.
,
10 ,
490 
492

13)

http://www.ietf.org/html.charters/manetcharter.html, accessed April 2009.

14)

http://tools.ietf.org/wg/manet/, accessed September 2008.

15)

M. AlAkaidi ,
M. Alchaita
.
Link stability and mobility in ad hoc wireless networks.
IET Commun.
,
2 ,
173 
78

16)

C. Bettstetter ,
H. Hartenstein ,
P.C. Xavier
.
Stochastic properties of the random waypoint mobility model.
ACM/Kluwer Wirel. Netw.: Special issue on Model. Anal. Mobile Netw.
,
5 ,
555 
567

17)

Hong, X., Gerla, M., Pei, G., Chiang, C.C.: `A group mobility model for ad hoc wireless networks', Proc. ACM Int. Workshop on Modeling and Simulation of Wireless and Mobile Systems (MSWiM 1999), August 1999, Seattle, WA, USA, p. 53–60.

18)

Blough, D.M., Resta, G., Santi, P.: `A statistical analysis of the longrun node spatial distribution in mobile ad hoc networks', Proc. Fifth ACM Int. Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems (MSWiM 2002), September 2002, Atlanta, USA, p. 30–37.

19)

D.M. Blough ,
G. Resta ,
P. Santi
.
A statistical analysis of the longrun node spatial distribution in mobile ad hoc networks.
Wirel. Netw.
,
5 ,
543 
554

20)

Bettstetter, C., Wagner, C.: `The spatial node distribution of the random waypoint mobility model', Proc. Mobile Ad Hoc Networks, first German Workshop on Mobile Ad Hoc Networks (WMAN 2002), March 2002, Ulm, Germany, p. 41–58.

21)

R. Shi ,
X.Z. Yang
.
Research on the node spatial probabilistic distribution of the random waypoint mobility model for ad hoc network.
J. Comput. Res. Dev.
,
12 ,
2056 
2062

22)

H. Esa ,
V. Jorma
.
Random waypoint model in ndimensional space.
Oper. Res. Lett.
,
6 ,
567 
571

23)

C. Bettstetter ,
G. Resta ,
P. Santi
.
The node distribution of the random waypoint mobility model for wireless ad hoc networks.
IEEE Trans. Mobile Comput.
,
3 ,
257 
269

24)

E. Hyytiä ,
P. Lassila ,
J. Virtamo
.
Spatial node distribution of the random waypoint mobility model with applications.
IEEE Trans. Mob. Comput.
,
6 ,
680 
694

25)

R. Shi ,
X.Z. Yang
.
Research on node space probabilistic distribution according to random direction mobility model in Ad hoc network.
J. Comput. Res. Dev.
,
7 ,
1166 
1173

26)

T. Rappaport
.
(2004)
Wireless Communications: principles and practice.

27)

Royer, E.M., MelliarSmith, P.M., Moser, L.E.: `An analysis of the optimum node density for ad hoc mobile networks', Proc. IEEE Int. Conf. on Communications, 2001(ICC 2001), June 2001, Helsinki, Finland, p. 857–861.

28)

H. Takagi ,
L. Kleinrock
.
Optimal transmission range for randomly distributed packet radio terminals.
IEEE Trans. Commun.
,
246 
257

29)

http://web.informatik.unibonn.de/IV/Mitarbeiter/dewaal/BonnMotion/, accessed July 2009.

30)

A. Wesley
.
(2006)
Data structures and algorithm analysis in C++.

31)

Yoon, J., Liu, M., Noble, B.: `Random waypoint considered harmful', Proc. 22nd Annual Joint Conf. IEEE Computer and Communications Societies (INFOCOM 2003), April 2003, San Francisco, USA, p. 1312–1321.

32)

W. Navidi ,
T. Camp
.
Stationary distributions for the random waypoint mobility model.
IEEE Trans. Mob. Comput.
,
99 
108
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcom.2010.0651
Related content
content/journals/10.1049/ietcom.2010.0651
pub_keyword,iet_inspecKeyword,pub_concept
6
6