Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Topology-aware macro diversity handover technique for IEEE 802.16j multi-hop cellular networks

Topology-aware macro diversity handover technique for IEEE 802.16j multi-hop cellular networks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Macro diversity handover (MDHO) is the process by which a mobile station (MS) maintains connection with two or more access stations called a diversity set. In this study, the authors propose a topology-aware MDHO technique for time division duplex (TDD)-orthogonal frequency division multiple access (OFDMA)-based interference-limited multi-hop cellular networks. The proposed MDHO receives all the data signals transmitted by the diversity set members of the MS. It ensures that the topology of the diversity set members is always fully exploited. The efficiency of the proposed MDHO is validated using a mathematical model and computer simulation. The performance evaluation is carried out for different relay station (RS) transmitted powers. Evaluation results show that the proposed MDHO significantly outperforms the conventional MDHO. Over the MDHO regions in which the diversity set members are multi-hop relay base station (MR-BS) and RS, the proposed MDHO offers a carrier to interference and noise ratio gain and a spectral efficiency gain of as much as 4.5 dB and 0.85 bps/Hz, respectively, compared to the conventional MDHO.

References

    1. 1)
    2. 2)
      • Yanikomeroglu, H.: `Cellular multihop communications: infrastructure-based relay network architecture for 4G wireless systems', Proc. 22nd Queen's Biennial Symp. Communications, Queen's University, June 2004, Kingston, Ontario, Canada.
    3. 3)
      • Senarath, G., Tong, W., Zhu, P.: `Multi-hop relay system evaluation methodology (channel model and performance metrics)', Technical Report, IEEE 802.16j-06/013r1, October 2006.
    4. 4)
    5. 5)
    6. 6)
      • Hoymann, C., Dittrich, M., Goebbles, S.: `Dimensioning and capacity evaluation of cellular multihop WiMAX networks', Proc. IEEE Mobile WiMAX, March 2007, Orlando, FL, p. 150–157.
    7. 7)
    8. 8)
      • Mobile WiMAX – part I: a technical overview and performance evaluation. WiMAX Forum Whitepaper
    9. 9)
    10. 10)
      • Ko, Y.C., Luo, T., Jeong, G.: `Effect of noise variance in the channel estimation on dual-MRC over Rayleigh fading channels', Proc. 57th IEEE VTC 2003-Spring, April 2003, 4, p. 2538–2542.
    11. 11)
      • , : `Draft amendment to IEEE standard for local and metropolitan area networks, part 16: air interface for fixed and mobile broadband wireless access systems – multihop relay specification', IEEE P802.16j/D9, 2009.
    12. 12)
    13. 13)
      • Zhao, S., Teo, K.H., Tao, Z., Zhang, J.: `Macro diversity handover and fast access station switching in wireless multi-user multi-hop relay networks', US Patent 2008/0165736 A1, July 2008.
    14. 14)
    15. 15)
      • Yang, H., Lee, H., Lee, M.: `A mobility management protocol for multi-hop relay networks', Proc. Tenth IEEE ICACT, February 2008, Gangwon-Do, South Korea, 1, p. 37–42.
    16. 16)
    17. 17)
      • Hu, H., Yanikomeroglu, H., Falconer, D., Periyalwar, S.: `Range extension without capacity penalty in cellular networks with digital fixed relays', Proc. IEEE GLOBECOM’04, 2004, Dallas, Texas, USA, 5, p. 3053–3057.
    18. 18)
    19. 19)
      • IEEE 802.16e: ‘IEEE standard for local and metropolitan area networks, part 16: air interface for fixed and mobile broadband wireless access systems; amendment 2: physical and medium access control layers for combined fixed and mobile operation in licensed bands and corrigendum 1’, February 2006.
    20. 20)
    21. 21)
      • Ikeda, T., Asa, M., Saito, K.: `Comments on IEEE 802.16j path-loss models in IEEE802.16j-06/013', IEEE Technical Report, October 2006.
    22. 22)
      • WiMAX forum mobile system profile. WiMAX Forum Whitepaper
    23. 23)
      • , : `Radio resource management strategies', Technical Report, 3GPP TR 25.922, V3.7.0, Release 1999, March 2002, Technical Specification Group RAN, Working Group 2 (TSG RAN WG2).
    24. 24)
      • Feng, M., Wang, H., Chen, T.: `System level modeling and algorithms for a B3G system employing OFDMA', Proc. Second IEEE Int. Conf. Mobile Technology, Application and Systems, November 2005, Guangzhou, China.
    25. 25)
      • J. Sultan , M. Ismail , N. Misran , K. Jumari . Spectral efficiency evaluation of downlink mobile multi-hop relay systems employing macro diversity handover technique. Int. J. Comput. Sci. Netw. Secur. (IJCSNS) , 5 , 122 - 129
    26. 26)
      • Sun, Y., Basgeet, D.R., Fan, Z.: `Fast relay station handover', US Patent 2008/0316968 A1, December 2008.
    27. 27)
      • Baum, D.S., Hansen, J., Salo, J., Del Gardo, G., Milojevic, M., Kyosti, P.: `An interim channel model for beyond-3G systems: extending the 3GPP spatial channel model (SCM)', Proc. 61st IEEE VTC-Spring, 2005, 5, p. 3132–3136.
    28. 28)
      • S. Cho , E.W. Jang , J.M. Cioffi . Handover in multihop cellular networks. IEEE Commun. Mag. , 7 , 64 - 73
    29. 29)
      • Andrews, J.G., Ghosh, A., Muhamed, R.: `Fundamentals of WiMAX: understanding broadband wireless networking', Prentice Hall Communications Engineering and Emerging Technologies Series, 2007.
    30. 30)
      • Shen, G., Ni, W., Zou, W.: `Handover schemes in IEEE 802.16j', Technical Report, IEEE C802.16j-06_005r1, May 2006.
    31. 31)
      • Park, J.H., Han, K.Y., Cho, D.H.: `Reducing inter-cell handover events based on cell ID information in multi-hop relay systems', Proc. 65th IEEE VTC-Spring, April 2007, Dublin, p. 743–747.
    32. 32)
    33. 33)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2010.0092
Loading

Related content

content/journals/10.1049/iet-com.2010.0092
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address