http://iet.metastore.ingenta.com
1887

Learning models for video quality prediction over wireless local area network and universal mobile telecommunication system networks

Learning models for video quality prediction over wireless local area network and universal mobile telecommunication system networks

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Universal mobile telecommunication system (UMTS) is a third-generation mobile communications system that supports wireless wideband multimedia applications. The primary aim of this study is to present learning models based on neural networks for objective, non-intrusive prediction of video quality over wireless local area network (WLAN) and UMTS networks for video applications. The contributions of this study are two-fold: first, an investigation of the impact of parameters both in the application and physical layer on end-to-end video quality is presented. The parameters considered in the application layer are content type (CT), sender bitrate (SBR) and frame rate (FR), whereas in the physical layer block error rate (BLER) and link bandwidth (LBW) are considered. Secondly, learning models based on adaptive neural fuzzy inference system (ANFIS) are developed to predict the visual quality in terms of the mean opinion score for all contents over access networks of UMTS and WLAN. ANFIS is well suited for video quality prediction over error-prone and bandwidth restricted UMTS as it combines the advantages of neural networks and fuzzy systems. The ANFIS-based artificial neural network is trained using a combination of physical layer parameters such as BLER and LBW and application layer parameters of CT, SBR and FR. The proposed models are validated using unseen data set. The preliminary results show that good prediction accuracy was obtained from the models. This study should help in the development of a reference-free video prediction model and quality of service control methods for video over UMTS/WLAN networks.

References

    1. 1)
      • 3GPP: Available at http://www.3gpp2.org.
    2. 2)
      • DTR 0001: ‘Telecom and Internet converged services and protocols for advanced networking (TISPAN)’, Release 1 Definition.
    3. 3)
      • ITU-T Rec P.800: ‘Methods for subjective determination of transmission quality’, 1996.
    4. 4)
      • Video quality experts group, multimedia group test plan, Draft version 1.8, December 2005, www.vqeq.org.
    5. 5)
      • Z. Wang , L. Lu , A. Bovik . Video quality assessment based on structural distortion measurement. Signal Process.: Image Commun. Special issue on ‘Objective video quality metrics’ , 2 , 121 - 132
    6. 6)
      • http://www.its.bldrdoc.gov/vqm/.
    7. 7)
      • http://www.pevq.org.
    8. 8)
      • K. Yamagishi , T. Hayashi . Opinion model using psychological factors for interactive multimodal services. IEICE Trans. Commun. , 2 , 281 - 288
    9. 9)
      • Koumaras, H., Kourtis, A., Lin, C., Shieh, C.: `A theoretical framework for end-to-end video quality prediction of MPEG-based sequences', Third Int. Conf. on Networking and Services, 19–25 June 2007.
    10. 10)
      • K. Yamagishi , T. Tominaga , T. Hayashi , A. Takashi . Objective quality estimation model for videophone services. NTT Tech. Rev. , 6
    11. 11)
      • P. Calyam , E. Ekicio , C. Lee , M. Haffner , N. Howes . A gap-model based framework for online VVoIP QoE measurement. J. Commun. Netw. , 4 , 446 - 456
    12. 12)
      • Tao, S., Apostolopoulos, J., Guerin, R.: `Real-time monitoring of video quality in IP networks', Proc. ACM NOSSDAV, 2005.
    13. 13)
      • Q. Huynh-Thu , M. Ghanbari . Temporal aspect of perceived quality in mobile video broadcasting. IEEE Trans. Broadcast. , 3 , 641 - 651
    14. 14)
      • F. Massidda , D. Giusto , C. Perra . No reference video quality estimation based on human visual system for 2.5/3G devices. Proc. SPIE – Int. Soc. Opt. Engng. , 1 , 168 - 179
    15. 15)
      • Khan, A., Sun, L., Ifeachor, E.: `Content clustering-based video quality prediction model for MPEG4 video streaming over wireless networks', Proc. IEEE ICC, 14–18 June 2009, Dresden, Germany.
    16. 16)
      • T. Pliakas , G. Kormentzas , C. Skianis . Scalable video streaming traffic delivery in IP/UMTS networking environments. J. Multimedia , 2 , 37 - 46
    17. 17)
      • Politis, I., Dagiuklas, T., Kotsopoulos, S.: `Study of the QoS of video traffic over integrated 3G-WLAN systems', Mobimedia’06, 18–20 September 2006, Alghero, Sardinia, Italy.
    18. 18)
      • F. Angelis , I. Habib , F. Davide , M. Naghshineh . Intelligent content aware services in 3G wireless networks. IEEE J. Select. Areas Commun. , 2 , 221 - 234
    19. 19)
      • Salkintzis, A., Skyrianoglou, D., Passas, N.:: `Seamless multimedia QoS across UMTS and WLANs', Vehicular Technology Conf., 30 May–1 June 2005.
    20. 20)
      • Lo, A., Heijenk, G., Niemegeers, I.: `Performance evaluation of MPEG4 video streaming over UMTS networks using an integrated tool environment', Int. Symp. on Performance Evaluation of Computer and Telecommunication Systems, SPECTS, 24–28 July 2005, Philadelphia, PA, USA, p. 676–682.
    21. 21)
      • Alexiou, A., Bouras, C., Igglesis, V.: `Multimedia transmission over third generation cellular network', Proc. Tenth Int. IFIP Int. Conf., 25–27 August 2005, Colmar, France.
    22. 22)
      • Vassiliou, V., Antoniou, P., Giannakou, I., Pitsillides, A.: `Requirements for the transmission of streaming video in mobile wireless networks', Part I and II: 16th Int. Conf., ICANN, 10–14 September 2006, Athens, Greece.
    23. 23)
      • S. Brumme . (2004) Multimedia streaming on mobile phones.
    24. 24)
      • A. Alexiou , D. Antonellis , C. Bouras . Adaptive and reliable video transmission over UMTS for enhanced performance. Int. J. Commun. Syst. , 1 , 65 - 81
    25. 25)
      • Nemethova, O., Karner, W., Al-Moghrabi, A., Rupp, M.: `Cross layer detection for H264 video over UMTS', Proc. Int. Wireless Summit, 18–22 December 2005, Aolborg, Denmark.
    26. 26)
      • Dogan, S., Eminsoy, S., Sadka, A., Kondoz, A.: `Video content adaptation using transcoding for enabling UMA over UMTS', Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS'2004), April 2004, Lisbon, Portugal.
    27. 27)
      • S. Mohamed , G. Rubino . A study of real-time packet video quality using random neural networks. IEEE Trans. Circuits Syst. Video Technol. , 12 , 1071 - 1083
    28. 28)
      • Frank, P., Incer, J.:: `A neural network based test bed for evaluating the quality of video streams in IP networks', Proc. Electronics, Robotics and Automotive Mechanics Conf. (CERMA), September 2006, 1, p. 178–183.
    29. 29)
      • M. Ries , O. Nemethova , M. Rupp . Video quality estimation for mobile H.264/AVC video streaming. J. Commun. , 1 , 41 - 50
    30. 30)
      • A. Khan , L. Sun , E. Ifeachor . Content-based video quality prediction for MPEG4 video streaming over wireless networks. J. Multimedia , 4 , 228 - 239
    31. 31)
      • R. Jang . ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. , 3 , 665 - 685
    32. 32)
      • Ffmpeg, http://sourceforge.net/projects/ffmpeg.
    33. 33)
      • JM H.264 Software, http://iphome.hhi.de/suehring/tml/.
    34. 34)
      • NS2, http://www.isi.edu/nsnam/ns/.
    35. 35)
      • Klaue, J., Tathke, B., Wolisz, A.: `Evalvid – a framework for video transmission and quality evaluation', Proc. 13th Int. Conf. on Modelling Techniques and Tools for Computer Performance Evaluation, 2003, Urbana, Illinois, USA, p. 255–272.
    36. 36)
      • Enhanced UMTS Radio Access Network Extensions for ns-2 (e.u.r.a.n.e); http://eurane.ti-wmc.nl/eurane/.
    37. 37)
      • Khan, A., Sun, L., Fajardo, J., Liberal, F., Ifeachor, E.: `Video quality prediction model for H.264 video over UMTS networks and their application in mobile video streaming', IEEE ICC, Cape Town, South Africa (accepted for publication), 23–27 May 2010.
    38. 38)
      • G. Snedecor , W. Cochran . (1989) Statistical methods.
    39. 39)
      • Y. Hochberg , A.C. Tamhane . (1987) Multiple comparison procedures.
    40. 40)
      • ITU: ‘Subjective video quality assessment methods for multimedia applications’. ITU-T Recommendation P.910, Geneva, September 1999.
    41. 41)
      • http://www.tech.plym.ac.uk/staff/akhan/mostest/default4.htm.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2009.0649
Loading

Related content

content/journals/10.1049/iet-com.2009.0649
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address