Multi-source video streaming in a wireless vehicular ad hoc network

Access Full Text

Multi-source video streaming in a wireless vehicular ad hoc network

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study seeks to establish under what conditions (mobility, network size, wireless channel) multi-source video streaming is feasible across a wireless vehicular ad hoc network (VANET). Overlay networks with multiple sources have proven to be robust, distributed solutions to multimedia transport, including streaming. To achieve video streaming over a VANET overlay, this study introduces a spatial partition of a video stream based on flexible macroblock ordering. Tests show this can achieve a gain of over 5 dB in video quality (PSNR) depending on video content and packet loss rates. However, routing of streamed services over multiple hops and multiple paths may lead to significant packet losses, resulting in unacceptable quality of service. The paper examines the impact of differing traffic densities and road layouts upon an overlay network's performance. The work modelled the emerging IEEE 802.11p for wireless VANETs. The research demonstrates that the vehicles' mobility pattern and their drivers' behaviour need to be carefully modelled to determine signal reception. The study also considers the impact of the wireless channel, which also should be more realistically modelled.

Inspec keywords: wireless channels; ad hoc networks; multimedia communication; video streaming; mobility management (mobile radio)

Other keywords: overlay networks; signal reception; packet loss rates; gain 5 dB; wireless vehicular ad hoc network; multisource video streaming; VANET; vehicles mobility pattern; video quality; video content; wireless channel; macroblock ordering; multimedia transport

Subjects: Mobile radio systems; Multimedia communications

References

    1. 1)
      • Ko, Y.B., Vaidya, N.H.: `Location-Aided-Routing (LAR) in mobile ad-hoc networks', Proc. ACM/IEEE MOBICOM, October 1998, Dallas, Texas, USA, p. 66–75.
    2. 2)
      • Perkins, C.E., Royer, E.M.: `Ad Hoc On-Demand Distance Vector routing', Proc. IEEE Workshop Mobile Computing System and Applications, February 1999, New Orleans, USA, p. 90–100.
    3. 3)
      • Jajubiak, J., Koucheryavy, Y.: `State of the art and research challenges for VANETs', Proc. IEEE Consumer Communications and Networking Conf., January 2008, Las Vegas, NV, USA, p. 912–916.
    4. 4)
      • Jiang, D., Delgrossi, L.: `IEEE 802.11p: Towards an international standard for wireless access in vehicular environments', Proc. IEEE Vehicular Technology Conf., May 2008, Singapore, p. 2036–2040.
    5. 5)
      • Y. Wang , A.R. Reibman , S. Lin . Multiple description coding for video delivery. Proc. IEEE , 1 , 57 - 70
    6. 6)
    7. 7)
      • M. Treiber , A. Henneke , D. Helbing . Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E , 2 , 1805 - 1824
    8. 8)
    9. 9)
      • Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: `Making Gnutella-like P2P systems scalable', Proc. ACM SIGCOMM, August 2003, p. 407–418.
    10. 10)
      • Yang, J., Gong, S.: `A content-based layered multiple description coding scheme for robust video transmission over ad hoc networks', Proc. IEEE Int. Symp. Electronic Commerce and Security, 2009, p. 21–24.
    11. 11)
      • Broch, J., Maltz, D.A., Johnson, D.B.: `A performance comparison of multi-hop wireless ad hoc network routing protocols', Proc. ACM MOBICOM, October 1998, Dallas, Texas, USA, p. 85–97.
    12. 12)
      • V. Vars , M.N. Hannuksela . (2001) Non-normative error concealment algorithms.
    13. 13)
      • D.W. Matolak . Channel modeling for vehicle-to-vehicle communications. IEEE Commun. Mag. , 5 , 76 - 83
    14. 14)
      • Universität of Bonn, ‘BonnMotion: A mobility scenario generation and analysis tool’, User Manual, June 10, 2009.
    15. 15)
      • Djenouri, D., Nekka, E., Soualhi, W.: `Simulation of mobility models in vehicular ad hoc networks', Proc. ACM Int. Conf. Ambient Media and Systems, February 2007, Quebec, Canada, Article no. 4.
    16. 16)
      • Iyer, A., Rosenburg, C., Karnik, A.: `What is the right model for wireless channel interference?', IProc. Third Int. Conf. QoS in Heterogeneous Wired/Wireless Networks, 2006, Ontario, Canada, Article no. 2.
    17. 17)
      • Qadri, N.N., Liotta, A.: `A comparative analysis of routing protocols for MANETs', Proc. IADIS Int. Conf. Wireless Applications and Computing, November 2008, Amsterdam, Holland.
    18. 18)
      • Wellens, M., Petrova, M., Riihijärvi, J., Mähönen, P.: `Building a better mousetrap: Need for more realism in simulation', Proc. Second Annual Conf. Wireless on Demand Network System and Services, January 2005, St. Moritz, Switzerland, p. 150–157.
    19. 19)
      • L. Yong , Y. Guo , C. Liang . A survey on peer-to-peer video streaming systems. Peer-to-Peer Netw. Appl. , 18 - 28
    20. 20)
    21. 21)
      • A. Kesting , M. Treiber , D. Helbing . General lane-changing model MOBIL for car-following models. Transp. Res. Rec. , 86 - 94
    22. 22)
      • Yan, L.: `Can P2P benefit from MANET? Performance evaluation from users' perspective', Proc. Int. Conf. Mobile Sensor Networks, June 2005, Limassol, Cyprus, p. 1026–1035.
    23. 23)
      • W. Zheng , X. Liu , S. Shi , J. Hu , H. Dong , J. Wu . (2006) Peer-to-peer: a technical perspective, Handbook on theoretical and algorithmic aspects of sensor, ad hoc wireless, and peer-to-peer networks.
    24. 24)
      • Lamy-Bergot, C., Candillon, B., Pesquet-Popescu, B., Gadat, B.: `A simple, multiple description coding scheme for improved peer-to-peer video distribution over mobile links', Proc. IEEE Packet Coding Symp., April 2009, Chicago, USA.
    25. 25)
      • Wenger, S., Hannuksela, M.M., Stockhammer, T., Westerlund, M., Singer, D.: ‘RTP payload format for H.264’. RFC 3984, February 2005.
    26. 26)
      • M. Ghanbari . (2003) Standard codecs: image compression to advanced video coding.
    27. 27)
      • A. Goldsmith . (2005) Wireless communications.
    28. 28)
    29. 29)
      • P. Lambert , W. de Neve , Y. Dhondt , R. Van de Walle . Flexible macroblock ordering in H.264/AVC. J. Visual Commun. Represent. , 2 , 358 - 378
    30. 30)
      • Guo, M., Ammar, M.H., Zegura, E.W.: `V3: A vehicle-to-vehicle live video streaming architecture', Proc. Third IEEE Int. Conf. Pervasive Computing and Communications, March 2005, Kauai Island, HI, USA, p. 171–180.
    31. 31)
      • J. Oishi , K. Asukura , T. Watanabe . A communication model for inter-vehicle communication simulation systems based on properties of urban areas. Int. J. Comput. Sci. Netw. Secur. , 10 , 213 - 219
    32. 32)
      • Takai, M., Martin, J., Bagrodia, R.: `Effects of wireless physical layer modeling in mobile ad hoc networks', Proc. Int. Symp. Mobile Ad Hoc Networking and Computing, 2001, Chicago, USA, p. 87–94.
    33. 33)
    34. 34)
      • C.-O. Chow , H. Ishii . Enhancing real-time video streaming over mobile ad hoc networks using multipoint-to-point communication. Comput. Commun. , 1754 - 1764
    35. 35)
      • H. Schwarz , D. Marpe , T. Wiegand . Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Trans. Circuits Syst. Video Technol. , 9 , 1103 - 1120
    36. 36)
      • L.B. Oliveira , I.G. Siqueira , A.A.F. Loureiro . On the performance of ad hoc routing protocols under a peer-to-peer application. J. Parallel Distrib. Comput. , 11 , 1337 - 1347
    37. 37)
      • Doukas, A., Kalivas, G.: `Rician K factor estimation for wireless communication systems', Proc. IEEE Int. Conf. Wireless and Mobile Communications, July 2006, Bucharest, Romania, p. 69–73.
    38. 38)
      • Zhang, Q.: `Video delivery over wireless multi-hop networks', Proc. Int. Symp. Intelligent Signal Proc. and Communication System, December 2005, p. 793–796.
    39. 39)
      • J. Apostolopoulos . Reliable video communication over lossy packet networks using multiple state encoding and path diversity. Visual Commun. and Image Process. , 392 - 409
    40. 40)
      • Zeng, X., Bagrodia, R., Gerla, M.: `GloMoSim: a library for parallel simulation of large-scale wireless networks', Proc. 12th Workshop Parallel and Distributed Simulations, May 1998, Banff, Canada, p. 154–161.
    41. 41)
      • N. Qadri , M. Altaf , A. Liotta , M. Fleury , M. Ghanbari . Effective video streaming using mesh P2P with MDC over MANETS. J. Mob. Multimed. , 4 , 301 - 317
    42. 42)
      • Fiore, M., Härri, J., Filali, F., Bonnet, C.: `Vehicular mobility simulation for VANETs', Proc. 40th Annual Simulation Symp., March 2007, Norfolk, VI, USA, p. 301–307.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2009.0458
Loading

Related content

content/journals/10.1049/iet-com.2009.0458
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading