http://iet.metastore.ingenta.com
1887

Linear quadratic control of service rate allocation in a satellite network

Linear quadratic control of service rate allocation in a satellite network

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The real-time control of multiple queues handling traffic of different nature is obtaining increasing relevance in both the uplink and downlink of wireless telecommunication networks, characterised by the presence of a central access point. Such is the case of satellite networks, with either on-board processing or double-hop configuration, besides a number of terrestrial local and metropolitan wireless networks. Given a certain amount of available bandwidth, the problem is that of deciding, within a certain time frame, the allocation of bandwidth partitions for each traffic queue, whose packets are awaiting transmission; eventually, this determines the transmission rates to be passed to the scheduler and to the physical layer adaptive coding and modulation devices. In a satellite network, where this task is accomplished by a master station, residing at the access point, it is possible to take such decisions by means of a centralised controller, based on real-time instantaneous (in the downstream direction) or delayed (in the upstream) information on the queues' state. The study derives a control law to be used in this task, by adopting an approach based on optimal linear quadratic regulation. Both cases of un-delayed and delayed information are considered. The control laws are tested in a geo-stationary satellite scenario of digital video broadcasting – return channel via satellite (DVB-RCS), and the queues are considered at the medium access control level. Simulation results under real-traffic traces are also presented to highlight the effectiveness of the control and to compare alternative solutions.

References

    1. 1)
      • ETSI EN 301 790: ‘Digital video broadcasting (DVB); Interaction channel for satellite distribution systems’.
    2. 2)
      • ETSI EN 101 790: ‘Digital video broadcasting (DVB); Interaction channel for satellite distribution systems; Guidelines for the use of EN 301 790’.
    3. 3)
      • E. Altman , T. Başar , R. Srikant . Congestion control as a stochastic control problem with action delays – Part I. Automatica , 12 , 1937 - 1950
    4. 4)
      • Imer, O.Ç., Başar, T.: `Optimal solution to a team problem with information delays: an application in flow control for communication networks', Proc. 38th Conf. on Decision & Control (CDC'99), December 1999, Phoenix, AZ, p. 2697–2702.
    5. 5)
      • Altman, E., Başar, T., Srikant, R.: `Robust rate control for ABR sources', Proc. Infocom '98, March 1998, San Francisco, CA, p. 166–173.
    6. 6)
    7. 7)
      • G. Boggia , P. Camarda , L.A. Grieco , S. Mascolo , M. Nacci , M. Ajmone Marsan , G. Bianchi , M. Listanti , M. Meo . (2005) Performance evaluation of feedback based dynamic scheduler for 802.11e MAC.
    8. 8)
      • G. Boggia , P. Camarda , L.A. Grieco , S. Mascolo . Feedback-based control for providing real-time services with the 802.11e MAC. IEEE/ACM Trans. Netw. , 2 , 323 - 333
    9. 9)
      • M. Marchese , M. Mongelli . On-line bandwidth control for quality of service mapping over satellite independent service access points. Comput. Netw. , 12 , 2088 - 2111
    10. 10)
    11. 11)
      • N. Iuoras , T. Le-Ngoc . Dynamic capacity allocation for quality-of-service support in IP-based satellite networks. IEEE Wirel. Commun. Mag. , 5 , 14 - 20
    12. 12)
      • F. Chiti , R. Fantacci , D. Tarchi , S. Kota , T. Pecorella . QoS provisioning in GEO satellite with onboard processing using predictor algorithms. IEEE Wirel. Commun. Mag. , 5 , 21 - 27
    13. 13)
    14. 14)
    15. 15)
      • B.D.O. Anderson , J.B. Moore . (1971) Linear optimal control.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • A.E.B. Lim , J.B. Moore , L. Faybusovich . Separation theorem for linearly constrained LQG optimal control. Syst. Control Lett. , 227 - 235
    20. 20)
      • J.J. Alcaraz , J. Vales-Alonso , J. Garcia-Haro . Control-based scheduling with QoS support for vehicle to infrastructure communications. IEEE Wirel. Commun. Mag. , 6 , 32 - 39
    21. 21)
      • D.P. Bertsekas . (1995) Dynamic programming and optimal control.
    22. 22)
      • M. Aicardi , G. Casalino , R. Minciardi , R. Zoppoli . On the existence of stationary optimal receding-horizon strategies for dynamic teams with common past information structures. IEEE Trans. Autom. Control , 11 , 1767 - 1771
    23. 23)
      • Davoli, F., Secchi, R.: `Closed-loop control of multiple MAC queues in multiservice wireless access networks', ISTI-CNR Technical Report, 2008.
    24. 24)
      • ITU-T Recommendation H.263 (01/05), Video coding for low bit rate communication, January 2005.
    25. 25)
      • http://www.tkn.tu-berlin.de/research/trace/trace.html.
    26. 26)
      • J.W. Roberts . Traffic control in the B-ISDN. Comput. Netw. ISDN Syst. , 10 , 1055 - 1064
    27. 27)
      • L. Benmohamed , S.M. Meerkov . Feedback control of congestion in packet switching networks: the case of a single congested node. IEEE/ACM Trans. Netw. , 6 , 693 - 708
    28. 28)
      • A. Kolarov , G. Ramamurthy . A control-theoretic approach to the design of an explicit rate controller for ABR service. IEEE/ACM Trans. Netw. , 5 , 741 - 753
    29. 29)
      • Hassan, M., Sirisena, H.: `Optimal control of queues in computer networks', Proc. IEEE Int. Conf. Communication (ICC 2001), June 2001, Helsinki, Finland, 2, p. 637–641.
    30. 30)
      • http://www.3gpp.org/specs/specs.htm.
    31. 31)
      • IEEE Standard 802.16–2004: IEEE standard for local and metropolitan area networks – Part 16: air interface for fixed broadband wireless access systems.
    32. 32)
      • IEEE 802.11 WG Home Page http://www.ieee802.org/11/.
    33. 33)
    34. 34)
      • 802.11e-2005. IEEE Standard for Information technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements.
    35. 35)
      • ITU-T Recommendation G.984.1, General characteristics for gigabit-capable passive optical networks, March 2003.
    36. 36)
      • D. Cavendish , M. Gerla , S. Mascolo . A control theoretical approach to congestion control in packet networks. IEEE/ACM Trans. Netw. , 5 , 893 - 906
    37. 37)
      • W. Michiels , S.-I. Niculescu . (2007) Stability and stabilization of time-delay systems: an eigenvalue-based approach.
    38. 38)
      • L. Tassiulas , A. Ephremides . Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Trans. Autom. Control , 12 , 1936 - 1948
    39. 39)
      • S.M. Nikol'skii . (2002) Encyclopaedia of mathematics.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2009.0448
Loading

Related content

content/journals/10.1049/iet-com.2009.0448
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address