Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Analysis of metamodels for model-based production automation system engineering

In the current Industry 4.0 era, automated production systems (aPS) comprising of multi-disciplinary artefacts all closely interwoven are required to adapt to various and varying requirements from customers and environment which introduce additional complexity. Model-based engineering on the premise of metamodelling is regarded as a promising paradigm to handle this complexity to engineer aPS. Although various metamodels appear to solve problems in different viewpoints on systems, the absence of a core metamodel causes inconsistencies between the metamodels and hinders common understanding of the system and model reuse. In this study, the authors analyse existing metamodels from different research groups and present inconsistencies among them explicitly which support the necessity of the core metamodel. Considering properties of aPS together with relevant standards, the authors present a demonstration of analyses on exemplary metamodels and a set of criteria to understand the various aspects of the aPS metamodels as the first step towards the core metamodel. Feasibility of creating a universal metamodel of aPS domain is discussed, and the authors claim the necessity of having a common understanding of core concepts of aPS to support the cross-disciplinary reuse of existing metamodels and, accordingly, the compatibility of the instalment and operation of components.

References

    1. 1)
      • 12. Object Management Group (OMG): ‘MDA guide rev.2.0’, 2014, (June), pp. 115.
    2. 2)
      • 44. International Council on Systems Engineering (INCOSE): ‘Systems engineering vision 2020’, 2007.
    3. 3)
      • 35. Kramer, M.E., Burger, E., Langhammer, M.: ‘View-centric engineering with synchronized heterogeneous models’. Proc. First Workshop on View-Based, Aspect-Oriented and Orthographic Software Modelling, Montpellier France, 2013, pp. 5:15:6.
    4. 4)
      • 39. Verein Deutscher Ingenieure (VDI) e.V.: ‘VDI/VDE 2193 – sprache für I4.0-komponenten – struktur von nachrichten (en: language for I4.0 components – structure of messages)’, 2019.
    5. 5)
      • 25. Krause, J., Herrmann, A., Diedrich, C.: ‘Test case generation from formal system specifications based on UML state machine’, Atp-International, 2008, 1, pp. 4754.
    6. 6)
      • 52. Mayer, S.H.: ‘Development of a completely decentralized control system for modular continuous conveyors’ (Universitätsverlag Karlsruhe, Karlsruhe, 2009).
    7. 7)
      • 58. Fischer, J., Marcos, M., Vogel-Heuser, B.: ‘Model-based development of a multi-agent system for controlling material flow systems’, 2018, 66, p. 438.
    8. 8)
      • 49. International Electrotechnical Commission (IEC): ‘IEC 61131-3 programmable logic controllers – part 3: programming languages’, 2009.
    9. 9)
      • 32. Vogel-Heuser, B., Zou, M.: ‘Leveraging inconsistency management in the multi-view collaborative modelling of cyber-physical production systems’, IET Collab. Intell. Manuf., 2019, 1, (4), pp. 126129.
    10. 10)
      • 55. Hildebrandt, C., Scholz, A., Fay, A., et al: ‘Semantic modeling for collaboration and cooperation of systems in the production domain’, 2017 22nd IEEE Int. Conf. on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus, 2017, pp. 18.
    11. 11)
      • 22. Bonfè, M., Fantuzzi, C., Secchi, C.: ‘Design patterns for model-based automation software design and implementation’, Control Eng. Pract., 2013, 21, (11), pp. 16081619.
    12. 12)
      • 66. DIN: ‘DIN SPEC 91345: reference architecture model industrie 4.0 (RAMI4.0)’, 2016.
    13. 13)
      • 9. Object Management Group (OMG): ‘Object management group terms and acronyms’. Available at https://www.omg.org/gettingstarted/terms_and_acronyms.htm, accessed January 2020.
    14. 14)
      • 28. Berardinelli, L., Biffl, S., Lüder, A., et al: ‘Cross-disciplinary engineering with AutomationML and SysML’, At-Automatisierungstechnik, 2016, 64, (4), pp. 253269.
    15. 15)
      • 4. Durdik, Z., Klatt, B., Koziolek, H., et al: ‘Sustainability guidelines for long-living software systems’. IEEE Int. Conf. Software Maintenance, ICSM, Trento, Italy, 2012, pp. 517526.
    16. 16)
      • 30. Jensen, J.C., Chang, D.H., Lee, E.A.: ‘A model-based design methodology for cyber-physical systems’. IWCMC 2011 – Seventh Int. Wireless Communications and Mobile Computing Conf., Istanbul, Turkey, 2011, pp. 16661671.
    17. 17)
      • 14. Clark, T., Sammut, P., Willans, J.: ‘Applied metamodelling: a foundation for language driven development (3rd edn)’. ArXiv, 2015.
    18. 18)
      • 6. Vogel-Heuser, B., Schuetz, D., Frank, T., et al: ‘Model-driven engineering of manufacturing automation software projects – A SysML-based approach’, Mechatronics. (Oxf), 2014, 24, (7), pp. 883897.
    19. 19)
      • 60. Legat, C., Mund, J., Campetelli, A., et al: ‘Interface behavior modeling for automatic verification of industrial automation systems’ functional conformance’, At-Automatisierungstechnik, 2014, 62, (11), pp. 815825.
    20. 20)
      • 41. International Organization for Standardization (ISO): ‘IEC 62264-1:2013 – enterprise-control system integration – part 1: models and terminology’, 2013.
    21. 21)
      • 8. International Organization for Standardization (ISO): ‘ISO/IEC 42010:2011 systems and software engineering – architecture description’, 2011.
    22. 22)
      • 46. Vogel-Heuser, B., Diedrich, C., Fay, A., et al: ‘Challenges for software engineering in automation’, J. Softw. Eng. Appl., 2014, 07, pp. 440451.
    23. 23)
      • 45. International Council on Systems Engineering (INCOSE): ‘System engineering vision 2025’, 2014.
    24. 24)
      • 3. McFarlane, D.C., Bussmann, S.: ‘Developments in holonic production planning and control’, Prod. Plan. Control, 2000, 11, (6), pp. 522536.
    25. 25)
      • 26. Kormann, B., Tikhonov, D., Vogel-Heuser, B.: ‘Automated PLC software testing using adapted UML sequence diagrams’. 14th IFAC Symp. Information Control Problems in Manufacturing, Bucharest, Romania, 2012, vol. 45, no. 6, pp. 16151621.
    26. 26)
      • 20. Pietrusewicz, K.: ‘Metamodelling for design of mechatronic and cyber-physical systems’, Appl. Sci., 2019, 9, (3), p. 376.
    27. 27)
      • 47. International Electrotechnical Commission (IEC): ‘IEC 60050-351:2013 – International electrotechnical vocabulary (IEV) – part 351: control technology’, 2013.
    28. 28)
      • 7. Witte, M.E., Diedrich, C., Figalist, H.: ‘Model-based development in automation’, At-Automatisierungstechnik, 2018, 66, (5), pp. 360371.
    29. 29)
      • 68. Greeff, G., Ghoshal, R.: ‘Business process design models and concepts used in operations systems’, in ‘Practical E-manufacturing and supply chain management’ (Newnes, Boston, MA, USA, 2004), pp. 66111.
    30. 30)
      • 23. Estévez, E., Marcos, M., Orive, D.: ‘Automatic generation of PLC automation projects from component-based models’, Int. J. Adv. Manuf. Technol., 2007, 35, (5), pp. 527540.
    31. 31)
      • 38. International Electrotechnical Commission (IEC): ‘IEC 61512-1:1997 – batch control – part 1: models and terminology’, 1997.
    32. 32)
      • 13. Mellor, S.J., Scott, K., Uhl, A., et al: ‘MDA distilled: principles of model-driven architecture’, in ‘MDA distilled: principles of model-driven architecture’ (Addison-Wesley Professional, Boston, USA., 2004), p. 14.
    33. 33)
      • 59. Aicher, T., Regulin, D., Schuetz, D., et al: ‘Increasing flexibility of modular automated material flow systems: A meta model architecture’, IFAC-PapersOnLine, 2016, 49, (12), pp. 15431548.
    34. 34)
      • 57. Heinrich, R., Koch, S., Cha, S., et al: ‘Architecture-based change impact analysis in cross-disciplinary automated production systems’, J. Syst. Softw., 2018, 146, pp. 167185.
    35. 35)
      • 33. Farias, K., De Oliveira, T.C., Gonçales, L.J., et al: ‘UML2Merge: a UML extension for model merging’, IET Softw.., 2019, 13, (6), pp. 575586.
    36. 36)
      • 42. International Electrotechnical Commission (IEC): ‘IEC TR 62390:2005 – common automation device – profile guideline’, 2005.
    37. 37)
      • 67. Verein Deutscher Ingenieure (VDI) e.V.: ‘VDI/VDE 3695: engineering of industrial plants – evaluation and optimization – subject processes’, 2010.
    38. 38)
      • 37. Hardebolle, C., Boulanger, F.: ‘Exploring multi-paradigm modeling techniques’, Simulation, 2009, 85, (11–12), pp. 688708.
    39. 39)
      • 34. Wolfenstetter, T., Basirati, M.R., Böhm, M., et al: ‘Introducing TRAILS: A tool supporting traceability, integration and visualisation of engineering knowledge for product service systems development’, J. Syst. Softw., 2018, 144, pp. 342355.
    40. 40)
      • 27. Hundt, L., Drath, R., Lüder, A., et al: ‘Seamless automation engineering with AutomationML®’. 2008 IEEE Int. Technology Management Conf. (ICE), Lisbon, Portugal, 2008, pp. 18.
    41. 41)
      • 19. Reichwein, A., Paredis, C.: ‘Overview of architecture frameworks and modeling languages for model-based systems engineering’. Proc. ASME Design Engineering Technical Conf., Washington, DC, USA, 2011.
    42. 42)
      • 62. Kernschmidt, K., Feldmann, S., Vogel-Heuser, B.: ‘A model-based framework for increasing the interdisciplinary design of mechatronic production systems’, J. Eng. Des., 2018, 29, (11), pp. 617643.
    43. 43)
      • 48. Vogel-Heuser, B.: ‘Automation in the wood and paper industry’, in Nof, S.Y. (Ed.): ‘Springer handbook of automation’ (Springer Berlin Heidelberg, Berlin, Germany, 2009), pp. 10151026.
    44. 44)
      • 53. Witsch, D.: ‘Modellgetriebene entwicklung von steuerungssoftware auf basis der UML unter berücksichtigung der domänenspezifischen anforderungen des maschinen- und anlagenbaus (en: model-driven development of control software based on UML considering domain-specific requirements of machine and plant engineering)’ (Technische Universität München, Munich, Germany, 2013).
    45. 45)
      • 61. International Electrotechnical Commission (IEC): ‘IEC 62769–5 field device integration (FDI) – part 5: FDI information model’, 2015.
    46. 46)
      • 65. Straube, F., Pfohl, H.-C., Günthner, W.A., et al: ‘Trends und strategien in der logistik, ein blick auf die agenda des logistik-managements 2010’, 2005.
    47. 47)
      • 40. Gîrbea, A., Nechifor, S., Sisak, F., et al: ‘Design and implementation of an OLE for process control unified architecture aggregating server for a group of flexible manufacturing systems’, IET Softw.., 2011, 5, (4), pp. 406414.
    48. 48)
      • 2. Vogel-Heuser, B., Fay, A., Schaefer, I., et al: ‘Evolution of software in automated production systems: challenges and research directions’, J. Syst. Softw., 2015, 110, pp. 5484.
    49. 49)
      • 64. Leitão, P., Karnouskos, S., Ribeiro, L., et al: ‘Smart agents in industrial cyber–physical systems’, Proc. IEEE, 2016, 104, (5), pp. 10861101.
    50. 50)
      • 15. Object Management Group (OMG): ‘OMG unified modeling language – version 2.5.1’, 2017.
    51. 51)
      • 16. Vyatkin, V.: ‘Software engineering in industrial automation: state-of-the-art review’, IEEE Trans. Ind. Informat., 2013, 9, (3), pp. 12341249.
    52. 52)
      • 63. Ulewicz, S., Vogel-Heuser, B., Member, S.: ‘Industrially applicable system regression test prioritization in production automation’, IEEE Trans. Autom. Sci. Eng., 2018, 15, (4), pp. 18391851.
    53. 53)
      • 36. Egyed, A.: ‘Automatically detecting and tracking inconsistencies in software design models’, IEEE Trans. Softw. Eng., 2011, 37, (2), pp. 188203.
    54. 54)
      • 18. Shi, J., Wan, J., Yan, H., et al: ‘A survey of cyber-physical systems’. 2011 Int. Conf. on Wireless Communications and Signal Processing, WCSP 2011, Nanjing, China, 2011, pp. 16.
    55. 55)
      • 17. Fay, A., Vogel-Heuser, B., Frank, T., et al: ‘Enhancing a model-based engineering approach for distributed manufacturing automation systems with characteristics and design patterns’, J. Syst. Softw., 2015, 101, pp. 221235.
    56. 56)
      • 56. Priego, R., Armentia, A., Estévez, E., et al: ‘On applying MDE for generating reconfigurable automation systems’. 2015 IEEE 13th Int. Conf. on Industrial Informatics (INDIN), Cambridge, UK., 2015, pp. 12331238.
    57. 57)
      • 31. Vogel-Heuser, B., Böhm, M., Brodbeck, F., et al: ‘Interdisciplinary engineering of cyber physical production systems: highlighting the benefits of a combined interdisciplinary modelling approach on the basis of an industrial case’, Des. Sci., 2020, 6, pp. 136.
    58. 58)
      • 54. Schlie, A., Rosiak, K., Urbaniak, O., et al: ‘Analyzing variability in automation software with the variability analysis toolkit’. Proc. 23rd Int. Systems and Software Product Line Conf. – Volume B’, Paris France, 2019.
    59. 59)
      • 29. Derler, P., Lee, E.A., Sangiovanni-vincentelli, A.L.: ‘Addressing modeling challenges in cyber-physical systems’, 2011.
    60. 60)
      • 5. Feldmann, S., Kernschmidt, K., Wimmer, M., et al: ‘Managing inter-model inconsistencies in model-based systems engineering: application in automated production systems engineering’, J. Syst. Softw., 2019, 153, pp. 105134.
    61. 61)
      • 10. Stachowiak, H.: ‘Allgemeine modelltheorie’ (Springer-Verlag, Wien, 1973).
    62. 62)
      • 50. Thramboulidis, K.: ‘The 3 + 1 SysML view-model in model integrated mechatronics’, J. Softw. Eng. Appl., 2010, 03, (2), pp. 109118.
    63. 63)
      • 21. Lazarova-Molnar, S., Mohamed, N., Al-Jaroodi, J.: ‘Data analytics framework for industry 4.0: enabling collaboration for added benefits’, IET Collab. Intell. Manuf., 2019, 1, (4), pp. 117125.
    64. 64)
      • 24. Yang, C., Vyatkin, V.: ‘Transformation of Simulink models to IEC 61499 function blocks for verification of distributed control systems’, Control Eng. Pract., 2012, 20, (12), pp. 12591269.
    65. 65)
      • 11. Online Etymology Dictionary: ‘Meta-origin and meaning of prefix meta- by online etymology dictionary’. Available at https://www.etymonline.com/word/meta, accessed January 2020.
    66. 66)
      • 1. Vogel-Heuser, B., Hess, D.: ‘Guest editorial industry 4.0-prerequisites and visions’, IEEE Trans. Autom. Sci. Eng., 2016, 13, (2), pp. 411413.
    67. 67)
      • 43. Verein Deutscher Ingenieure (VDI) e.V.: ‘VDI/VDMA 5100 Blatt 1 – Systemarchitektur für die intralogistik (SAIL) – grundlagen (en: system architecture for intralogistics (SAIL) – fundamentals)’, 2016.
    68. 68)
      • 51. Regulin, D., Schuetz, D., Aicher, T., et al: ‘Model based design of knowledge bases in multi agent systems for enabling automatic reconfiguration capabilities of material flow modules’. 2016 IEEE Int. Conf. on Automation Science and Engineering (CASE), Fort Worth, TX, USA., 2016, pp. 133140.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cim.2020.0013
Loading

Related content

content/journals/10.1049/iet-cim.2020.0013
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address