access icon openaccess Non-linear optimal control for the hot-steel rolling mill system

Control of hot-steel rolling mills aims at raising the levels of quality of the related industrial production and at minimising the cost of the electric energy consumed by such industrial units. This paper proposes a non-linear optimal control approach for the hot-steel rolling mill system. The non-linear dynamic model of the hot-steel rolling mill undergoes approximate linearisation around a temporary operating point which is recomputed at each iteration of the control method. The linearisation relies on Taylor series expansion and on the calculation of the system's Jacobian matrices. For the approximately linearised model of the hot-steel rolling process, an H-infinity feedback controller is designed. This controller provides the solution of the non-linear optimal control problem for the system under model uncertainty and external perturbations. For the computation of the controller's feedback gain, an algebraic Riccati equation is iteratively solved at each time-step of the control method. The global asymptotic stability properties of the control method are proven through Lyapunov analysis. Finally, to implement state estimation-based control for this system, the H-infinity Kalman filter is proposed as a robust state estimator.

Inspec keywords: Kalman filters; nonlinear dynamical systems; linearisation techniques; Jacobian matrices; Riccati equations; robust control; metallurgy; feedback; Lyapunov methods; state estimation; rolling mills; stability; control system synthesis; asymptotic stability; optimal control

Other keywords: control method; hot-steel rolling mill system; nonlinear optimal control approach; Lyapunov analysis; nonlinear dynamic model; hot-steel rolling process; state estimation-based control; global asymptotic stability properties; nonlinear optimal control problem; H-infinity feedback controller; H-infinity Kalman filter; algebraic Riccati equation

Subjects: Manufacturing facilities; Control system analysis and synthesis methods; Control technology and theory (production); Numerical analysis; Stability in control theory; Metallurgical industries; Optimal control; Control applications in metallurgical industries; Signal processing theory; Linear algebra (numerical analysis); Nonlinear control systems

References

    1. 1)
      • 3. Orcajo, G.A., Rodriguez, J.D., Cano, J.M., et al: ‘Retrofit of a hot rolling mill plant with three-level active front end drives’, IEEE Trans. Ind. Appl., 2018, 54, (3), pp. 29542964.
    2. 2)
      • 8. Pedersen, L.M., Wittenmark, B.: ‘Multivariable controller design for a hot rolling mill’, IEEE Trans. Control Syst. Technol., 1998, 6, (3), pp. 304312.
    3. 3)
      • 39. Simon, D.: ‘A game theory approach to constrained minimax state estimation’, IEEE Trans. Signal Process., 2006, 54, (2), pp. 405412.
    4. 4)
      • 33. Rigatos, G.G., Tzafestas, S.G.: ‘Extended Kalman filtering for fuzzy modelling and multi-sensor fusion’, Math. Comput. Model. Dyn. Syst., 2007, 13, pp. 251266.
    5. 5)
      • 43. Rossiter, J.A., Fleming, P.: ‘Robust constrained predictive controllers for hot rolling mills: disturbance uncertainty case. IMech part I’, J. Syst. Control Eng., 2008, 222, pp. 132153.
    6. 6)
      • 35. Rigatos, G., Zhang, Q.: ‘Fuzzy model validation using the local statistical approach’, Fuzzy Sets Syst., 2009, 60, (7), pp. 882904.
    7. 7)
      • 22. Dong, M., Liu, C., Li, G.: ‘Robust fault diagnosis based on nonlinear model of hydraulic gauge control system on rolling mill’, IEEE Trans. Control Syst. Technol., 2010, 18, (2), pp. 510515.
    8. 8)
      • 28. Rigatos, G.: ‘Intelligent renewable energy systems: modelling and control’ (Springer, Cham, Switzerland, 2017).
    9. 9)
      • 25. Liu, C., Chai, T., Wang, H., et al: ‘Data-based hybrid tension estimation and faults diagnosis of cold rolling continuous annealing processes’, IEEE Trans. Neural Netw., 2011, 22, (11), pp. 22842295.
    10. 10)
      • 32. Rigatos, G., Siano, P., Cecati, C.: ‘A new nonlinear H-infinity feedback control approach for three-phase voltage source converters’, Electr. Power Compon. Syst., 2016, 44, (3), pp. 302312.
    11. 11)
      • 38. Gibbs, B.P.: ‘Advanced Kalman filtering, least squares and modelling: a practical handbook’ (J. Wiley, New Jersey, USA, 2011).
    12. 12)
      • 36. Toussaint, G.J., Basar, T., Bullo, F.: ‘H optimal tracking control techniques for nonlinear underactuated systems’. Proc. IEEE CDC 2000, 39th IEEE Conf. on Decision and Control, Sydney Australia, December 2000.
    13. 13)
      • 40. Shi, P., Li, J., Zhou, D., et al: ‘Nonlinear torsional vibrational dynamics of rolling mill's drive system under spindle parametric excitation’. Proc. of the 10th World Congress on Intelligent Control and Automation, Beijing, China, July 2012.
    14. 14)
      • 21. Galkina, A., Gafer, I., Schlacher, K.: ‘Model predictive contro and linear programming of the strip infeed in hot rolling mills’. IFAC 2017 World Congress, Toulouse, France, July 2017.
    15. 15)
      • 11. Noh, I., Wan, S., Jang, Y.J.: ‘Non-interactive looper and strip tension control for hot finishing mill using nonlinear disturbance observer’, ISIJ Int., 2012, 52, (6), pp. 10921100.
    16. 16)
      • 45. Yin, F.C., Zhang, D.H., Zhang, Y.C.: ‘Dynamic modelling and rolling data analysis of the tanden hot rolling process’, Simul. Trans. Soc. Modell. Simul., 2017, 93, (4), pp. 307321.
    17. 17)
      • 7. Yang, Y., Zhang, X.: ‘An optimized variable structure control for hydraulic AGC of cold rolling mill’. IEEE ICIT 2009, IEEE Intl. Conf. on Industrial Technology, Gippsland, Australia, February 2009.
    18. 18)
      • 13. Geddes, E.J.M., Postlethwaite, I.: ‘Improvements in product quality in tandem cold rolling using robust multivariable control’, IEEE Trans. Control Syst. Technol., 1998, 6, (2), pp. 257269.
    19. 19)
      • 41. Park, H., Jung, D., Won, S.: ‘Based on nonlinear distrurbance observer approach non-interactive control for hot rolling mill - experimental validation’. 13th IFAC Symp. on Automation and Mining, Mineral and Metal Processing, Cape Town, South Africa, August 2010.
    20. 20)
      • 34. Basseville, M., Nikiforov, I.: ‘Detection of abrupt changes: theory and applications’ (Prentice-Hall, New Jersey, USA, 1993).
    21. 21)
      • 24. Xing, H., Chen, W.: ‘Walking beam furnace temperature control using fuzzy feed-forward method in steel rolling mills’. IEEE CCC 2013, Proc. of the 32nd Chinese Control Conf., Xian, China, July 2013.
    22. 22)
      • 5. Hou, H., Nian, X., Chen, J., et al: ‘Decentralized coordinated control of elastic web winding systems without tension sensor’, ISA Trans., 2018, 80, pp. 350359.
    23. 23)
      • 6. Ma, W., Li, T., Zhang, X., et al: ‘The effect of the parameters of PI control for hydraulic looper control in hot rolling mill’, IOP Conf. Series: Mater. Sci. Eng., 2018, 381, p. 012063.
    24. 24)
      • 4. Steinboeck, A., Muhlberger, G., Kugi, A.: ‘Control of strip tension in a rolling mill based on loopers and impedance control, control of strip tension in a rolling mill base on loopers and impendance control’. IFAC 2014 World Congress, Cape Town, South Africa, August 2014.
    25. 25)
      • 15. Yildiz, S.K., Forbes, J.F., Huang, B., et al: ‘Dynamic modelling and simulation of a hot-strip finishing mill’, Appl. Math. Model., 2003, 33, pp. 32083225.
    26. 26)
      • 9. Hesketh, T., Jiang, Y.A., Clemens, D.J., et al: ‘Controller design for hot-strip finishing mills’, IEEE Trans. Control Syst. Technol., 1998, 6, (2), pp. 208219.
    27. 27)
      • 12. Hashimoto, T., Yoshioto, Y., Ohtshaka, T.: ‘Receding horizon control for hot-strip mill cooling systems’, IEEE Trans. Mechatron., 2012, 18, (3), pp. 9981005.
    28. 28)
      • 23. Yildiz, S.K., Huang, B., Forbes, J.F.: ‘Dynamics and variance control of hot mill loopers’, Control Eng. Pract., 2008, 16, pp. 89100.
    29. 29)
      • 42. Li, G., Janabi-Sharifi, F.: ‘Fuzzy looperless tension control for hot strip rolling’, Fuzzy Sets Syst., 2009, 160, pp. 521536.
    30. 30)
      • 20. Schausberger, F., Steinback, A., Kugi, A.: ‘Feedback control of the contour shape in heavy-plate hot rolling’, IEEE Trans. Control Syst. Technol., 2018, 26, (3), pp. 842852.
    31. 31)
      • 1. Zhong, Z., Wang, J.: ‘Looper-tension almost disturbance decouping control for hot strip finishing mill based on feedback linearization’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 36683679.
    32. 32)
      • 17. Ozaki, K., Oheshuka, T., Fujimoto, K., et al: ‘Nonlinear receding horizon control of a tandem cold mill in acceleration and deceleration conditions’. IEEE ICROS-SICE 2009, Fukuoka, Japan, August 2009.
    33. 33)
      • 16. Fuchshumer, S., Schlacher, K., Keinstel, G.: ‘A non-circular arc roll gap model for control applications in steel rolling mills’. IEEE CCA 2005, Proc. of the IEEE 2005 Conf. on Control Applications, Toronto, Canada, August 2005.
    34. 34)
      • 37. Lublin, L., Athans, M.: ‘An experimental comparison of and designs for interferometer testbed’. Lectures Notes in Control and Information Sciences: Feedback Control, Nonlinear Systems and Complexity, 1995, pp. 150172.
    35. 35)
      • 2. Orcajo, G.A., Rodriguez, J.D., Ardura, P.G., et al: ‘Dynamic estimation of electrical demand in hot rolling mills’, IEEE Trans. Ind. Appl., 2016, 53, (3), pp. 27142723.
    36. 36)
      • 31. Rigatos, G., Siano, P., Wira, P., et al: ‘Nonlinear H-infinity feedback control for asynchronous motors of electric trains’, J. Intell. Ind. Syst., 2015, 1, (3), pp. 8598.
    37. 37)
      • 10. Furlan, R., Cuzzola, F.A., Parisini, T.: ‘Friction compensation in the interstand looper of hot-strip mills: A sliding-mode control approach’, Control Eng. Pract., 2008, 16, pp. 214224.
    38. 38)
      • 44. Choi, L.S., Rossiter, J.A., Fleming, P.J.: ‘Looper and tension control in hot rolling mills: a survey’, J. Process Control, 2007, 17, pp. 509521.
    39. 39)
      • 14. Park, H., Noh, I., Wen, S.: ‘Non-interactive control of hot rolling mill using nonlinear disturbance observers’. IEEE ICROS-SICE 2003, Fukuoka, Japan, August 2009.
    40. 40)
      • 26. Sbarbaro-Hofer, D., Neumerkel, D., Hune, K.: ‘Neural control of a steel rolling mill’, IEEE Control Syst. Mag., 1993, 13, (3), pp. 6978.
    41. 41)
      • 29. Rigatos, G.: ‘Nonlinear control and filtering using differential flatness theory approaches: applications to electromechanical systems’ (Springer, Cham, Switzerland, 2015).
    42. 42)
      • 19. Grabmair, G., Schlacher, K., Kugi, A.: ‘Geometric energy-based analysis and controller design of hydraulic actuators applied in rolling mills’. IEEE ECC 2003, European Control Conf. 2003, Cambridge, UK, September 2003.
    43. 43)
      • 30. Rigatos, G., Siano, P.: ‘A new nonlinear H-infinity feedback control approach to the problem of autonomous robot navigation’, J. Intell. Ind. Syst., 2015, 1, (3), pp. 179186.
    44. 44)
      • 27. Rigatos, G., Busawon, K.: ‘Robotic manipulators and vehicles: control, automation and filtering’ (Springer, Cham, Switzerland, 2018).
    45. 45)
      • 18. Zhang, Q.X., Zhou, C., Wang, D., et al: ‘A research based on the energy consumption of a balanced cold rolling mill production scheduling optimization’. IEEE CCC 2014, Proc. of the 32nd Chinese Control Conf., Nanjing, China, July 2014.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cim.2019.0010
Loading

Related content

content/journals/10.1049/iet-cim.2019.0010
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading