Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Potential applications of 5G communication technologies in collaborative intelligent manufacturing

Nowadays most of the communication technologies used in the manufacturing industry are still wired, including various fieldbuses and dedicated industrial Ethernet technologies, though wireless communication technologies including WiFi and ZigBee are recently being adopted. This study is to investigate the integration of 5G wireless communication technologies with collaborative intelligent manufacturing (CIM) processes and systems. 5G technologies and typical scenarios including enhanced mobile broadband, massive machine type communications, and ultra-reliable low latency communication are introduced. Various possible applications or business slices of 5G in CIM are analysed, including human–machine interfaces and production IT, process automation, factory automation, logistics and warehousing, monitoring, and maintenance. These applications are analysed by the functions as modules with the extended 5C architecture. A modular collaborative production approach is suggested to combine modules to achieve on-demand resource allocation and complete flexible tasks in CIM systems. Related research challenges and opportunities are also discussed.

References

    1. 1)
      • 30. Chandrasekaran, B., Tschaen, B., Benson, T.: ‘Isolating and tolerating SDN application failures with LegoSDN’. Symp. on Software Defined Networking (SDN) Research, SOSR 2016, Santa Clara, CA, United States, 14 March 2016–15 March 2016,.
    2. 2)
      • 22. Naik, P., Shaw, D.K., Vutukuru, M.: ‘NFVPerf: online performance monitoring and bottleneck detection for NFV’. 2016 IEEE Conf. on Network Function Virtualization and Software Defined Networks, NFV-SDN 2016, Palo Alto, CA, United states, 7 November 2016–10 November 2016, pp. 154160.
    3. 3)
      • 34. Hu, X., Wong, K.-K., Yang, K.: ‘Wireless powered cooperation-assisted mobile edge computing’, IEEE Trans. Wirel. Commun., 2018, 17, pp. 23752388.
    4. 4)
      • 39. Luo, Y.-C., Huang, S.-C., Chou, J., et al: ‘A computation workload characteristic study of C-RAN’. 38th IEEE Int. Conf. on Distributed Computing Systems, ICDCS 2018, Vienna, Austria, 2 July 2018–5 July 2018, vol. 2018, pp. 15991603.
    5. 5)
      • 19. Wang, H., Chen, S., Ai, M., et al: ‘Mobility driven network slicing: an enabler of on demand mobility management for 5G’, J. China Univ. Posts Telecommun., 2017, 24, (4), pp. 1626.
    6. 6)
      • 11. Aissioui, A., Ksentini, A., Gueroui, A.M., et al: ‘On enabling 5G automotive systems using follow Me edge-cloud concept’, IEEE Trans. Veh. Technol., 2018, 67, (6), pp. 53025316.
    7. 7)
      • 27. Tayyaba, S.K., Shah, M.A., Khan, O.A., et al: ‘Software defined network (SDN) based internet of things (Iot): a road ahead’. 2017 Int. Conf. on Future Networks and Distributed Systems, ICFNDS 2017, Cambridge, United Kingdom, 19 July 2017–20 July 2017, vol. Part F130522.
    8. 8)
      • 21. Lee, B.Y., Lee, B.C.: ‘Fault localization in NFV framework’. 18th Int. Conf. on Advanced Communications Technology, ICACT 2016, Pyeongchang, Korea Republic of, 31 January 2016–3 February 2016, vol. 2016, pp. 352355.
    9. 9)
      • 32. Zhou, H., Wu, C., Yang, C., et al: ‘SDN-RDCD: A real-time and reliable method for detecting compromised SDN devices’, IEEE/ACM Trans. Netw., 2018, 26, (5), pp. 20482061.
    10. 10)
      • 1. Gundall, M., Schneider, J., Schotten, H.D., et al: ‘5G as enabler for industrie 4.0 use cases: challenges and concepts’. 23rd IEEE Int. Conf. on Emerging Technologies and Factory Automation, ETFA 2018, Torino, Italy, 4 September 2018–7 September 2018, vol. 2018, pp. 14011408.
    11. 11)
      • 8. Mannweiler, C., Schmelz, L.C., Lohmuller, S., et al: ‘Cross-domain 5G network management for seamless industrial communications’. 2016 IEEE/IFIP Network Operations and Management Symp., NOMS 2016, Istanbul, Turkey, April 25, 2016-April 29, 2016, pp. 868872.
    12. 12)
      • 51. Xu, X.: ‘From cloud computing to cloud manufacturing’, Robot. Comput.-Integr. Manuf., 2012, 28, (1), pp. 7586.
    13. 13)
      • 49. Vickery, S.K., Droge, C., Jacobs, M.: ‘The effects of product modularity on competitive performance: do integration strategies mediate the relationship?’, Int. J. Oper. Prod. Manage., 2007, 27, (10), pp. 10461068.
    14. 14)
      • 24. Xu, Z., Liang, W., Huang, M., et al: ‘Efficient NFV-enabled multicasting in SDNs’, 2018.
    15. 15)
      • 43. Botsov, M., Klugel, M., Kellerer, W., et al: ‘Location dependent resource allocation for mobile device-to-device communications’. 2014 IEEE Wireless Communications and Networking Conf., WCNC 2014, Istanbul, Turkey, 6 April 2014–9 April 2014, pp. 16791684.
    16. 16)
      • 36. Zhang, G., Zhang, W., Cao, Y., et al: ‘Energy-delay tradeoff for dynamic offloading in Mobile-edge computing system with energy harvesting devices’, IEEE Trans. Ind. Inf., 2018, 14, (10), pp. 46424655.
    17. 17)
      • 26. Alcorn, J., Melton, S., Chow, C.E.: ‘Portable SDN testbed prototype’. 47th Annual IEEE/IFIP Int. Conf. on Dependable Systems and Networks Workshops, DSN-W 2017, Denver, CO, United States, 26 June 2017–29 June 2017, pp. 109110.
    18. 18)
      • 44. Lien, S.-Y., Chien, C.-C., Liu, G. S.-T., et al: ‘Enhanced LTE device-to-device proximity services’, IEEE Commun. Mag., 2016, 54, (12), pp. 174182.
    19. 19)
      • 29. Gheorghe, G., Avanesov, T., Palattella, M.-R., et al: ‘SDN-RADAR: network troubleshooting combining user experience and SDN capabilities’. 1st IEEE Conf. on Network Softwarization, NETSOFT 2015, London, United Kingdom, 13 April 2015–17 April 2015,.
    20. 20)
      • 25. Guija, D., Siddiqui, M.S.: ‘Identity and access control for micro-services based 5G NFV platforms’. 13th Int. Conf. on Availability, Reliability and Security, ARES 2018, Hamburg, Germany, 27 August 2018–30 August 2018,.
    21. 21)
      • 15. Alliance, N.: ‘NGMN 5G white paper’, 2015.
    22. 22)
      • 6. Xu, H., Yu, W., Griffith, D., et al: ‘A survey on industrial internet of things: A cyber-physical systems perspective’, IEEE Access, 2018, 6, pp. 7823878259.
    23. 23)
      • 5. Lee, J., Bagheri, B., Kao, H.-A.: ‘A cyber-physical systems architecture for industry 4.0-based manufacturing systems’, Manuf. Lett., 2015, 3, pp. 1823.
    24. 24)
      • 4. Li, J.-Q., Yu, F.R., Deng, G., et al: ‘Industrial internet: A survey on the enabling technologies, applications, and challenges’, IEEE Commun. Surv. Tutor., 2017, 19, (3), pp. 15041526.
    25. 25)
      • 50. Mourtzis, D., Vlachou, E.: ‘A cloud-based cyber-physical system for adaptive shop-floor scheduling and condition-based maintenance’, J. Manuf. Syst., 2018, 47, pp. 179198.
    26. 26)
      • 9. Mahmood, A., Ashraf, M.I., Gidlund, M., et al: ‘Over-the-air time synchronization for URLLC: requirements, challenges and possible enablers’. 15th Int. Symp. on Wireless Communication Systems, ISWCS 2018, Lisbon, Portugal, August 28, 2018-August 31, 2018, vol. 2018.
    27. 27)
      • 10. Dalla Cia, M., Mason, F., Peron, D., et al: ‘Using smart city data in 5G self-organizing networks’, IEEE Internet Things J., 2018, 5, pp. 645654,.
    28. 28)
      • 46. Shaik, A.M., Rao, V.V.S.K., Rao, C.S.: ‘Development of modular manufacturing systems—a review’, Int. J. Adv. Manuf. Technol., 2014, 76, (5–8), pp. 789802.
    29. 29)
      • 31. Tatang, D., Quinkert, F., Frank, J., et al: ‘SDN-GUARD: protecting SDN controllers against SDN rootkits’. 2017 IEEE Conf. on Network Function Virtualization and Software Defined Networks, NFV-SDN 2017, Berlin, Germany, 6 November 2017–8 November 2017, vol. 2017, pp. 297302.
    30. 30)
      • 2. Pethig, F., Niggemann, O., Walter, A.: ‘Towards Industrie 4.0 compliant configuration of condition monitoring services’. 15th IEEE Int. Conf. on Industrial Informatics, Emden, Germany, INDIN 2017, 24 July 2017–26 July 2017, pp. 271276.
    31. 31)
      • 28. Albert, E., Gomez-Zamalloa, M., Rubio, A., et al: ‘SDN-Actors: modeling and verification of SDN programs’. 22nd Int. Symp. on Formal Methods, FM 2018 Held as Part of the Federated Logic Conf., FloC 2018, Oxford, United kingdom, 15 July 2018–17 July 2018 (LNCS, vol. 10951), pp. 550567.
    32. 32)
      • 33. Wang, S., Zhao, Y., Xu, J., et al: ‘Edge server placement in mobile edge computing’, 2018.
    33. 33)
      • 23. Shih, M.-W., Kumar, M., Kim, T., et al: ‘S-NFV: securing NFV states by using SGX’. 2016 ACM Int. Workshop on Security in Software Defined Networks and Network Function Virtualization, SDN-NFV Security 2016, New Orleans, LA, United states, 11 March 2016, pp. 4548.
    34. 34)
      • 38. Ranaweera, C., Wong, E., Nirmalathas, A., et al: ‘5G c-RAN architecture: A comparison of multiple optical fronthaul networks’. 21st Int. Conf. on Optical Network Design and Modeling, ONDM 2017, Budapest, Hungary, 15 May 2017–17 May 17 2017,.
    35. 35)
      • 17. Yoo, T.: ‘Network slicing architecture for 5G network’. 2016 Int. Conf. on Information and Communication Technology Convergence, ICTC 2016, Jeju Island, Korea, Republic of, 19 October 2016–21 October 2016, pp. 10101014.
    36. 36)
      • 18. Challa, R., Jeon, S., Raza, S.M., et al: ‘Superflex: network slicing based super flexible 5G architecture’. 12th Int. Conf. on Ubiquitous Information Management and Communication, IMCOM 2018, Langkawi, Malaysia, 5 January 2018–7 January 2018,.
    37. 37)
      • 7. Hatzivasilis, G., Fysarakis, K., Soultatos, O., et al: ‘The industrial internet of things as an enabler for a circular economy Hy-LP: A novel IIoT protocol, evaluated on a wind park's SDN/NFV-enabled 5G industrial network’, Comput. Commun., 2018, 119, pp. 127137.
    38. 38)
      • 40. Liu, P., Xu, G., Yang, K., et al: ‘Joint routing and mobile VM selection algorithm in multihop C-RAN networks’, Int. J. Commun. Syst., 2018, 31, e3402. https://doi.org/10.1002/dac.3402.
    39. 39)
      • 13. Chen, W., Yaguchi, Y., Naruse, K., et al: ‘A study of robotic cooperation in cloud robotics: architecture and challenges’, IEEE Access, 2018, 6, pp. 3666236682.
    40. 40)
      • 52. Beitz, W., Pahl, G.: ‘Engineering design’ (The Design Council, London, 1988).
    41. 41)
      • 14. 3GPP.: ‘TR 22.804; study on communication for automation in vertical domains’, 2018.
    42. 42)
      • 54. Taylor, P.J., Dargahi, T., Dehghantanha, A., et al: ‘A systematic literature review of blockchain cyber security’, Digit. Commun. Netw., 2019. DOI: https://doi.org/10.1016/j.dcan.2019.01.005.
    43. 43)
      • 42. Doppler, K., Rinne, M., Wijting, C., et al: ‘Device-to-device communication as an underlay to LTE-advanced networks’, IEEE Commun. Mag., 2009, 47, (12), pp. 4249.
    44. 44)
      • 48. Kusiak, A.: ‘Integrated product and process design: A modularity perspective’, J. Eng. Des., 2002, 13, (3), pp. 223231.
    45. 45)
      • 16. Ni, J., Lin, X., Shen, X.: ‘Efficient and secure service-oriented authentication supporting network slicing for 5G-enabled Iot’, IEEE J. Sel. Areas Commun., 2018, 36, (3), pp. 644657.
    46. 46)
      • 41. Lisi, S.S., Alabbasi, A., Tornatore, M., et al: ‘Cost-effective migration towards C-RAN with optimal fronthaul design’. 2017 IEEE Int. Conf. on Communications, ICC 2017, Paris, France, 21 May 2017–25 May 2017,.
    47. 47)
      • 37. Santos, J., Dinis, D., Riscado, D., et al: ‘A flexible physical level and fronthaul research testbed for C-RAN’, Microprocess. Microsyst., 2017, 52, pp. 480490.
    48. 48)
      • 20. Shen, W., Yoshida, M., Kawabata, T., et al: ‘VConductor: an NFV management solution for realizing end-to-end virtual network services’. 16th Asia-Pacific Network Operations and Management Symp., APNOMS 2014, Hsinchu, Taiwan, 17 September 2014–19 September 2014,.
    49. 49)
      • 3. IIC.: ‘The industrial internet of things volume G1: reference architecture’, 2017.
    50. 50)
      • 45. Wang, K., Yu, F. R., Li, H.: ‘Information-centric virtualized cellular networks with device-To-device communications’, IEEE Trans. Veh. Technol., 2016, 65, (11), pp. 93199329.
    51. 51)
      • 12. Cosovic, M., Tsitsimelis, A., Vukobratovic, D., et al: ‘5G Mobile cellular networks: enabling distributed state estimation for smart grids’, IEEE Commun. Mag., 2017, 55, (10), pp. 6269.
    52. 52)
      • 35. Wang, Z., Zhao, Z., Min, G., et al: ‘User mobility aware task assignment for Mobile edge computing’, Future Gener. Comput. Syst., 2018, 85, pp. 18.
    53. 53)
      • 47. Salhieh, S.E.M., Kamrani, A.K.: ‘Macro level product development using design for modularity’, Robot. Comput.-Integr. Manuf., 1999, 15, (4), pp. 319329.
    54. 54)
      • 53. Baldwin, C.Y., Clark, K.B.: ‘Managing in an age of modularity’, (in eng), Harv. Bus. Rev., 1997, 75, (5), pp. 8493.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cim.2019.0007
Loading

Related content

content/journals/10.1049/iet-cim.2019.0007
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address