access icon openaccess Unsupervised fault diagnosis method based on iterative multi-manifold spectral clustering

Fault diagnosis is very important to the modern manufacturing system. As a powerful data-driven method, machine learning (ML) has been widely used for fault diagnosis. However, a certain amount of labelled data is essential to most of the ML methods, which is not always available. In this study, an unsupervised fault diagnosis method based on iterative multi-manifold spectral clustering (IMMSC) is proposed. The IMMSC, that the affinity matrix is constructed based on local tangent space, can improve the performance of spectral clustering on multi-manifold distributed data. The IMMSC is conducted after feature extraction to divide data into different clusters first. Then local outlier factor is utilised to identify the normal condition. A fault index is found to recognise the fault conditions. The proposed IMMSC is tested on five simulation datasets and the proposed method is validated on the motor bearing dataset provided by Case Western Reserve University. The mean accuracy of IMMSC on simulation data is 97.85%, which outperforms the other spectral clustering and traditional methods. Furthermore, the result of the IMMSC is stable over 30 individual tests. The mean accuracy of the proposed method on motor bearing dataset is 98.53%. The result demonstrates its potential in fault diagnosis field.

Inspec keywords: mechanical engineering computing; pattern clustering; fault diagnosis; matrix algebra; feature extraction; machine bearings; iterative methods

Other keywords: multimanifold distributed data; modern manufacturing system; data-driven method; local outlier factor; iterative multimanifold spectral clustering; ML methods; labelled data; fault diagnosis field; simulation data; machine learning; unsupervised fault diagnosis method; feature extraction; motor bearing dataset; fault conditions; IMMSC; local tangent space; affinity matrix; fault index

Subjects: Civil and mechanical engineering computing; Linear algebra (numerical analysis); Interpolation and function approximation (numerical analysis); Data handling techniques; Mechanical engineering applications of IT; Numerical analysis; Mechanical components

References

    1. 1)
      • 9. Wen, L., Gao, L., Li, X.: ‘A new deep transfer learning based on sparse auto-encoder for fault diagnosis’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 49, (1), pp. 136144.
    2. 2)
      • 30. Pokrajac, D., Lazarevic, A., Latecki, L.J.: ‘Incremental local outlier detection for data streams’. IEEE Symp. Computational Intelligence and Data Mining, Honolulu, HI, USA, 2007, pp. 504515.
    3. 3)
      • 13. Hu, Y.T., Qu, F.H., Wen, C.J.: ‘Bearing fault diagnosis based on multi-scale possibilistic clustering algorithm’. 2016 13th Int. Computer Conf. Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 2016, pp. 354357.
    4. 4)
      • 31. Smith, W.A., Randall, R.B.: ‘Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study’, Mech. Syst. Signal Process., 2015, 64, pp. 100131.
    5. 5)
      • 21. Gong, D., Zhao, X., Medioni, G.: ‘Robust multiple manifolds structure learning’. ICML 2012 Proc. of the 29th Int. Conf. on Machine Learning, Edinburgh, Scotland, 2012, pp. 2532.
    6. 6)
      • 37. Chen, G., Lerman, G.: ‘Spectral curvature clustering (SCC)’, Int. J. Comput. Vis., 2009, 81, (3), pp. 317330.
    7. 7)
      • 38. Souvenir, R., Pless, R.: ‘Manifold clustering’. Tenth IEEE Int. Conf. Computer Vision, Beijing, China, 2005, vol. 1, pp. 648653.
    8. 8)
      • 16. Zhang, Z., Zha, H.: ‘Principal manifolds and nonlinear dimensionality reduction via tangent space alignment’, SIAM J. Sci. Comput., 2004, 26, (1), pp. 313338.
    9. 9)
      • 22. Sun, C., Zhang, Z., He, Z., et al: ‘Manifold learning-based subspace distance for machinery damage assessment’, Mech. Syst. Signal Process., 2016, 70, pp. 637649.
    10. 10)
      • 12. Gao, J., Kang, M., Tian, J., et al: ‘Unsupervised locality-preserving robust latent low-rank recovery-based subspace clustering for fault diagnosis’, IEEE Access, 2018, 6, pp. 5234552354.
    11. 11)
      • 17. Belkin, M., Niyogi, P.: ‘Laplacian eigenmaps for dimensionality reduction and data representation’, Neural Comput., 2003, 15, (6), pp. 13731396.
    12. 12)
      • 28. Ng, A.Y., Jordan, M.I., Weiss, Y.: ‘On spectral clustering: analysis and an algorithm’, NIPS'01 Proc. of the 14th Int. Conf. on Neural Information Processing Systems: Natural and Synthetic, Vancouver, BC, Canada, 2002, pp. 849856.
    13. 13)
      • 34. Bradley, P.S., Mangasarian, O.L.: ‘K-plane clustering’, J Glob. Optim., 2000, 16, (1), pp. 2332.
    14. 14)
      • 7. Shao, H., Jiang, H., Zhang, X., et al: ‘Rolling bearing fault diagnosis using an optimization deep belief network’, Meas. Sci. Technol., 2015, 26, (11), p.115002.
    15. 15)
      • 20. Wang, Y., Jiang, Y., Wu, Y., et al: ‘Spectral clustering on multiple manifolds’, IEEE Trans. Neural Netw., 2011, 22, (7), pp. 11491161.
    16. 16)
      • 33. Vidal, R., Ma, Y., Sastry, S.: ‘Generalized principal component analysis (GPCA)’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (12), pp. 19451959.
    17. 17)
      • 15. Roweis, S.T., Saul, L.K.: ‘Nonlinear dimensionality reduction by locally linear embedding’, Science, 2000, 290, (5500), pp. 23232326.
    18. 18)
      • 2. Wang, D., Peter, W.T.: ‘Prognostics of slurry pumps based on a moving-average wear degradation index and a general sequential Monte Carlo method’, Mech. Syst. Signal Process., 2015, 56, pp. 213229.
    19. 19)
      • 6. Bin, G.F., Gao, J.J., Li, X.J., et al: ‘Early fault diagnosis of rotating machinery based on wavelet packets – empirical mode decomposition feature extraction and neural network’, Mech. Syst. Signal Process., 2012, 27, pp. 696711.
    20. 20)
      • 23. Breunig, M.M., Kriegel, H.P., Ng, R.T., et al: ‘LOF: identifying density-based local outliers’, ACM Sigmod Record, Dallas, TX, USA, 2000, vol. 29, no. 2, pp. 93104.
    21. 21)
      • 8. Jia, F., Lei, Y., Lin, J., et al: ‘Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data’, Mech. Syst. Signal Process., 2016, 72, pp. 303315.
    22. 22)
      • 11. Costa, B.S.J., Angelov, P.P., Guedes, L.A.: ‘Fully unsupervised fault detection and identification based on recursive density estimation and self-evolving cloud-based classifier’, Neurocomputing, 2015, 150, pp. 289303.
    23. 23)
      • 29. Ding, H., Ding, K., Zhang, J., et al: ‘Local outlier factor-based fault detection and evaluation of photovoltaic system’, Sol. Energy, 2018, 164, pp. 139148.
    24. 24)
      • 10. Wen, L., Li, X., Gao, L., et al: ‘A new convolutional neural network-based data-driven fault diagnosis method’, IEEE Trans. Ind. Electron., 2018, 65, (7), pp. 59905998.
    25. 25)
      • 26. Von Luxburg, U.: ‘A tutorial on spectral clustering’, Stat. Comput., 2007, 17, (4), pp. 395416.
    26. 26)
      • 25. Tao, H., Hou, C., Nie, F., et al: ‘Effective discriminative feature selection with nontrivial solution’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, (4), pp. 796808.
    27. 27)
      • 3. Jung, U., Koh, B.H.: ‘Wavelet energy-based visualization and classification of high-dimensional signal for bearing fault detection’, Knowl. Inf. Syst., 2015, 44, (1), pp. 197215.
    28. 28)
      • 35. Cappelli, R., Maltoni, D.: ‘Multispace KL for pattern representation and classification’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, (9), pp. 977996.
    29. 29)
      • 36. Yan, J., Pollefeys, M.: ‘A general framework for motion segmentation: independent, articulated, rigid, non-rigid, degenerate and non-degenerate’. European Conf. Computer Vision, Berlin, Heidelberg, 2006, pp. 94106.
    30. 30)
      • 19. Boucher, T., Carey, C.J., Mahadevan, S., et al: ‘Aligning mixed manifolds’. AAAI, Austin, TX, USA, 2015, pp. 25112517.
    31. 31)
      • 18. Wang, Y., Jiang, Y., Wu, Y., et al: ‘Multi-manifold clustering’. Pacific Rim Int. Conf. Artificial Intelligence, Berlin, Heidelberg, 2010, pp. 280291.
    32. 32)
      • 27. Shi, J., Malik, J.: ‘Normalized cuts and image segmentation’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, (8), pp. 888905.
    33. 33)
      • 5. Wan, X., Wang, D., Peter, W.T., et al: ‘A critical study of different dimensionality reduction methods for gear crack degradation assessment under different operating conditions’, Measurement, 2016, 78, pp. 138150.
    34. 34)
      • 14. Tenenbaum, J.B., De Silva, V., Langford, J.C.: ‘A global geometric framework for nonlinear dimensionality reduction’, Science, 2000, 290, (5500), pp. 23192323.
    35. 35)
      • 4. Liu, R., Yang, B., Zhang, X., et al: ‘Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis’, Mech. Syst. Signal Process., 2016, 75, pp. 345370.
    36. 36)
      • 24. Hou, C., Nie, F., Yi, D., et al: ‘Discriminative embedded clustering: a framework for grouping high-dimensional data’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (6), pp. 12871299.
    37. 37)
      • 1. Dai, X., Gao, Z.: ‘From model, signal to knowledge: a data-driven perspective of fault detection and diagnosis’, IEEE Trans. Ind. Inf., 2013, 9, (4), pp. 22262238.
    38. 38)
      • 32. Hartigan, J.A., Wong, M.A.: ‘Algorithm AS 136: a k-means clustering algorithm’, J. R. Stat. Soc. Ser. C, 1979, 28, (1), pp. 100108.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cim.2019.0003
Loading

Related content

content/journals/10.1049/iet-cim.2019.0003
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading