Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Base types selection of PSS based on a priori algorithm and knowledge-based ANN

Manufacturers tend to bundle a product with its related services as a product service system (PSS), to create more values for customers and gain competitive advantages for themselves. Configuration design is the key process of PSS development. Configuring a PSS involves selecting and combining appropriate product and service components, to satisfy individual customer requirements. This study studies the mapping relationship between customer requirement attributes and PSS base types in PSS for CNC machine tools, which provides a great reference value for engineers in configuration design. Owing to the high complexity and non-linearity between customer requirement and product, an integrated intelligent learning method based on a priori algorithm and knowledge-based artificial neural network (ANN) is proposed in this study. First, the data of historical configuration instance data sets are processed and then a priori algorithm is used to extract the effective rules as domain knowledge. Domain knowledge is used to build the initial structure of ANN. Moreover, data sets are used to further optimize the network. The knowledge-based ANN is used to realize the mapping between customer requirement attributes and PSS base types. The proposed method is validated in the selection of the PSS base type for CNC machine tools.

References

    1. 1)
      • 23. Fisher, O., Watson, N., Porcu, L., et al: ‘Cloud manufacturing as a sustainable process manufacturing route’, J. Manuf. Syst., 2018, 47, pp. 5368, doi: https://doi.org/10.1016/j.jmsy.2018.03.005.
    2. 2)
      • 34. Osório, F.S., Amy, B.: ‘INSS: a hybrid system for constructive machine learning’, Neurocomputing, 1999, 28, (1–3), pp. 191205.
    3. 3)
      • 11. Serpen, G., Tekkedil, D.K., Orra, M.: ‘A knowledge-based artificial neural network classifier for pulmonary embolism diagnosis’, Comput. Biol. Med., 2008, 38, (2), p. 204.
    4. 4)
      • 35. Liu, C., Ding, W., Li, Z., et al: ‘Prediction of high-speed grinding temperature of titanium matrix composites using BP neural network based on PSO algorithm’, Int. J. Adv. Manuf. Technol., 2016, 89, (5–8), pp. 19.
    5. 5)
      • 29. Li, B., Li, Y., Wang, H., et al: ‘Compensation of automatic weighing error of belt weigher based on BP neural network’, Measurement, 2018, 129, pp. 625632, doi: https://doi.org/10.1016/j.measurement.2018.07.080.
    6. 6)
      • 15. Yu, J., Xi, L., Zhou, X.: ‘Intelligent monitoring and diagnosis of manufacturing processes using an integrated approach of KBANN and GA’ (Elsevier Science Publishers B.V., France, 2008).
    7. 7)
      • 28. Hou, T.H., Liu, W.L., Lin, L.: ‘Intelligent remote monitoring and diagnosis of manufacturing processes using an integrated approach of neural networks and rough sets’, J. Intell. Manuf., 2003, 14, (2), pp. 239253.
    8. 8)
      • 22. Li, P: ‘Special issue: intelligent manufacturing’, Engineering, 2017, 3, (5), p. 575, doi: https://doi.org/10.1016/J.ENG.2017.05.024.
    9. 9)
      • 30. Wu, J., Li, Z., Zhu, L., et al: ‘Optimized BP neural network for dissolved oxygen prediction’, IFAC-PapersOnLine, 2018, 51, (17), pp. 596601, doi: https://doi.org/10.1016/j.ifacol.2018.08.132.
    10. 10)
      • 14. Simsek, M.: ‘Knowledge based three-step modeling strategy exploiting artificial neural Network’ (Springer International Publishing, Switzerland, 2014).
    11. 11)
      • 4. Long, H.J., Wang, L.Y., Shen, J., et al: ‘Product service system configuration based on support vector machine considering customer perception’, Int. J. Prod. Res., 2013, 51, (18), pp. 54505468.
    12. 12)
      • 31. Li, J.-C., Zhao, D.-L., Ge, B.-F., et al: ‘A link prediction method for heterogeneous networks based on BP neural network’, Physica A, Stat. Mech. Appl., 2018, 495, pp. 117, doi: https://doi.org/10.1016/j.physa.2017.12.018.
    13. 13)
      • 20. Zhou, J., Li, P., Zhou, Y., et al: ‘Toward new-generation intelligent manufacturing’, Engineering, 2018, 4, (1), pp. 1120, doi: https://doi.org/10.1016/j.eng.2018.01.002.
    14. 14)
      • 9. Xie, S.L., Zhang, Y.H., Chen, C.H., et al: ‘Identification of nonlinear hysteretic systems by artificial neural network’, Mech. Syst. Signal Process., 2013, 34, (1–2), pp. 7687.
    15. 15)
      • 18. Yu, H., Wen, J., Wang, H., et al: ‘An improved a priori algorithm based on the Boolean matrix and Hadoop’, Procedia Eng., 2011, 15, (1), pp. 18271831.
    16. 16)
      • 26. Zhang, Y., Zhang, G., Qu, T., et al: ‘Analytical target cascading for optimal configuration of cloud manufacturing services’, J. Clean Prod., 2017, 151, pp. 330343, doi: https://doi.org/10.1016/j.jclepro.2017.03.027.
    17. 17)
      • 3. Long, H.J., Wang, L.Y., Zhao, S.X., et al: ‘An approach to rule extraction for product service system configuration that considers customer perception’, Int. J. Prod. Res., 2016, 54, (18), pp. 124.
    18. 18)
      • 1. Baines, T.S., Lightfoot, H.W., Evans, S., et al: ‘State-of-the-art in product-service systems’, Proc. Inst. Mech. Eng. B, J. Eng. Manuf., 2007, 221, (10), pp. 15431552.
    19. 19)
      • 13. Simsek, M., Aoad, A.: ‘Efficient reconfigurable microstrip patch antenna modeling exploiting knowledge based artificial neural networks’ (Springer International Publishing, Switzerland, 2016).
    20. 20)
      • 25. Zhang, M., Li, C., Shang, Y., et al: ‘Research on resource service matching in cloud manufacturing’, Manuf. Lett., 2018, 15, pp. 5054, doi: https://doi.org/10.1016/j.mfglet.2018.02.001.
    21. 21)
      • 17. Bhandari, A., Gupta, A., Das, D.: ‘Improvised a priori algorithm using frequent pattern tree for real time applications in data mining ⋆’, Procedia Comput. Sci., 2014, 46, pp. 644651.
    22. 22)
      • 19. Ye, Y., Chiang, C.C.: ‘A parallel a priori algorithm for frequent itemsets mining’. Int. Conf. Software Engineering Research, Management and Applications, 2006, pp. 8794.
    23. 23)
      • 8. Ketterer, C., Matzarakis, A.: ‘Mapping the physiologically equivalent temperature in urban areas using artificial neural network’, Landscape Urban Plan., 2016, 150, pp. 19.
    24. 24)
      • 32. Huang, J., He, L.: ‘Application of improved PSO – BP neural network in customer churn warning’, Procedia Comput. Sci., 2018, 131, pp. 12381246, doi: https://doi.org/10.1016/j.procs.2018.04.336.
    25. 25)
      • 5. Yu, L., Wang, L., Yu, J.: ‘Identification of product definition patterns in mass customization using a learning-based hybrid approach’, Int. J. Adv. Manuf. Technol., 2008, 38, (11–12), pp. 10611074.
    26. 26)
      • 24. Liu, Y., Xu, X., Zhang, L., et al: ‘Workload-based multi-task scheduling in cloud manufacturing’, Robot. Comput.-Integr. Manuf., 2017, 45, pp. 320, doi: https://doi.org/10.1016/j.rcim.2016.09.008.
    27. 27)
      • 36. Devaraj, D., Roselyn, J.P., Rani, R.U.: ‘Artificial neural network model for voltage security based contingency ranking’, Appl. Soft Comput. J., 2007, 7, (3), pp. 722727.
    28. 28)
      • 21. Li, H.-X., Si, H.: ‘Control for intelligent manufacturing: a multiscale challenge’, Engineering, 2017, 3, (5), pp. 608615, doi: https://doi.org/10.1016/J.ENG.2017.05.016.
    29. 29)
      • 33. Towell, G.G., Shavlik, J.W.: ‘Extracting refined rules from knowledge-based neural networks’ (Kluwer Academic Publishers, Netherlands, 1993).
    30. 30)
      • 16. Agrawal, R., Imielinski, T., Swami, A.: ‘Database mining: a performance perspective’, IEEE Trans. Knowl. Data Eng., 2002, 5, (6), pp. 914925.
    31. 31)
      • 6. Yu, L., Wang, L.: ‘Product portfolio identification with data mining based on multi-objective GA’, J. Intell. Manuf., 2010, 21, (6), pp. 797810.
    32. 32)
      • 12. Jagadeesh, R.P., Bose, C., Nagaraja, G.: ‘Performance studies on KBANN’. Int. Conf. Hybrid Intelligent Systems, Kitakyushu, Japan, 2004, pp. 198203.
    33. 33)
      • 2. Zhang, Z., Chu, X.: ‘A new approach for conceptual design of product and maintenance’ (Taylor & Francis, Inc., 2010).
    34. 34)
      • 7. Aparecida, C., Castro, D.O., Rafael, T., et al: ‘High-performance prediction of macauba fruit biomass for agricultural and industrial purposes using artificial neural networks’, Ind. Crops Prod., 2017, 108, pp. 806813.
    35. 35)
      • 10. Puma-Villanueva, W.J., Zuben, F.J.V.: ‘A constructive algorithm to synthesize arbitrarily connected feedforward neural networks’ (Elsevier Science Publishers B.V., London, 2012).
    36. 36)
      • 27. Yu, C., Mou, S., Ji, Y., et al: ‘A delayed product differentiation model for cloud manufacturing’, Comput. Ind. Eng., 2018, 117, pp. 6070, doi: https://doi.org/10.1016/j.cie.2018.01.019.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cim.2018.0003
Loading

Related content

content/journals/10.1049/iet-cim.2018.0003
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address