http://iet.metastore.ingenta.com
1887

Low error fixed-width two's complement squarer design using Booth-folding technique

Low error fixed-width two's complement squarer design using Booth-folding technique

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a design method for fixed-width two's complement squarer that receives an n-bit input and produces an n-bit squared product. To efficiently compensate for the truncation error, modified Booth-folding encoder signals are used for the generation of error compensation bias. The truncated bits are divided into two groups depending on their effects on the truncation error. Then, different error compensation methods are applied to each group. By simulations, it is shown that the performance of the proposed method is close to that of the true rounding method and much better than those of other methods. Also, it is shown that the proposed fixed-width two's complement squarers lead to about 34% reduction in area, 35% reduction in power consumption and 10% improvement in speed compared with conventional squarers.

References

    1. 1)
      • R.H. Strandberg , L.G. Bustamante , V.G. Oklobdzija , M. Soderstrand , J.C.L. Due . Efficient realizations of squaring circuit and reciprocal used in adaptive sample rate notch filters. J. VLSI Signal Process. , 3 , 303 - 309
    2. 2)
      • R. Jain , A. Madisetti , R.L. Baker . An integrated circuit design for pruned tree-search vector quantization encoding with an off-chip controller. IEEE Trans. Circuits Syst. Video Technol. , 6 , 147 - 158
    3. 3)
      • Pihl, J., Aas, E.J.: `A multiplier and squarer generator for high performance DSP applications', Proc. IEEE 39th Midwest Symp. on Circuits and Systems, August 1996, p. 109–112.
    4. 4)
      • A.J. Viterbi . Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory , 4 , 260 - 269
    5. 5)
      • J.G. Proakis . (1995) Digital communications.
    6. 6)
      • T.C. Chen . A binary multiplication scheme based on squaring. IEEE Trans. Comput. , 4 , 678 - 680
    7. 7)
      • J.-T. Yoo , K.F. Smith , G. Gopalakrishnan . A fast parallel squarer based on divide-and-conquer. IEEE J. Solid-State Circuits , 6 , 909 - 912
    8. 8)
      • R.K. Kolagotla , W.R. Griesbach , H.R. Srinivas . VLSI implementation of a 350 MHz 0.35 µm 8 bit merged squarer. Electron. Lett. , 1 , 47 - 48
    9. 9)
      • D.D. Caro , A.G.M. Strollo . Parallel squarer using Booth-folding technique. Electron. Lett. , 6 , 346 - 347
    10. 10)
      • A. Eshraghi , T.S. Fiez , K.D. Winters , T.R. Fischer . Design of a new squaring function for the Viterbi algorithm. IEEE J. Solid-State Circuits , 9 , 1102 - 1107
    11. 11)
      • M.H. Sheu , S.H. Lin . Fast compensative design approach for the approximate squaring function. IEEE J. Solid-State Circuits , 1 , 95 - 97
    12. 12)
      • J.M.P. Langlois , D. Al-Khalili . Carry-free approximate squaring functions with O(n) complexity and O(1) delay. IEEE Trans. Circuits Syst. II , 5 , 374 - 378
    13. 13)
      • Schulte, M.J., Swartzlander, J.E.E.: `Truncated multiplication with correction constant', Proc. VLSI Signal Processing VI, 1993, p. 388–396.
    14. 14)
      • S.S. Kidambi , F. El-Guibaly , A. Antoniou . Area-efficient multipliers for digital signal processing applications. IEEE Trans. Circuits Syst. II , 2 , 90 - 94
    15. 15)
      • King, E.J., Swartzlander, E.E.: `Data-dependent truncation scheme for parallel multipliers', Proc. 31st Asilomar Conf. Signals, Systems, and Computers, 1998, Pacific Grove, CA, USA, p. 1178–1182.
    16. 16)
      • J.M. Jou , S.R. Kuang , R.D. Chen . Design of low-error fixed-width multipliers for DSP applications. IEEE Trans. Circuits Syst. II , 6 , 836 - 842
    17. 17)
      • L.D. Van , C.C. Yang . Generalized low-error area-efficient fixed-width multipliers. IEEE Trans. Circuits Syst. I , 8 , 1608 - 1619
    18. 18)
      • S.J. Jou , M.H. Tsai , Y.L. Tsao . Low-error reduced-width Booth multipliers for DSP applications. IEEE Trans. Circuits Syst. I , 11 , 1470 - 1474
    19. 19)
      • K.J. Cho , K.C. Lee , J.G. Chung , K.K. Parhi . Design of low error fixed-width modified Booth multiplier. IEEE Trans. VLSI Syst. , 5 , 522 - 531
    20. 20)
      • Cho, K.J., Kim, W.K., Kim, B.K., Chung, J.G.: `Design of low error fixed-width squarer', Proc. IEEE Workshop on Signal Processing Systems (SIPS'2003), August 2003, Seoul, Korea, p. 213–218.
    21. 21)
      • Walters, , Schulte, M.J., Arnold, M.G.: `Truncated squarers with constant and variable correction', Proc. SPIE: Advanced Signal Processing Algorithms, Architectures, and Implementations XIII, August 2004, Denver, CO, USA, p. 40–50.
    22. 22)
      • O.L. MacSorley . High speed arithmetic in binary computers. Proc. IRE , 1 , 67 - 91
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt_20060033
Loading

Related content

content/journals/10.1049/iet-cdt_20060033
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address