http://iet.metastore.ingenta.com
1887

RNS multiplication/sum-of-squares units

RNS multiplication/sum-of-squares units

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Digital signal processing and multimedia applications often profit from the use of a residue number system. Among the most commonly used moduli, in such systems, are those of 2n−1 and 2n+1 forms and among the most commonly used operations are multiplication and sum-of-squares. These operations are currently performed using distinct design units and/or consecutive machine cycles. Novel architectures for combined units that perform modulo 2n−1/diminished-1 modulo 2n+1 multiplication or sum-of-squares depending on the value of a control signal are proposed.

References

    1. 1)
      • M.A. Soderstrand , W.K. Jenkins , G.A. Jullien , F.J. Taylor . (1986) Residue number system arithmetic: modern applications in digital signal processing.
    2. 2)
    3. 3)
      • J. Ramirez , A. Garcia , S. Lopez-Buedo , A. Lloris . RNS-enabled digital signal processor design. Electron. Lett. , 266 - 268
    4. 4)
      • Ramirez, J., Garcia, A., Meyers-Baese, U., Lloris, A.: `Fast RNS FPL-based communications receiver design and implementation', Proc. 12th Int. Conf. on Field Program. Logic, 2002, 2438, Springer-Verlag, p. 472–481, Lecture Notes in Computer Science.
    5. 5)
      • J. Ramirez , U. Meyer-Baese . High performance, reduced complexity programmable RNS–FPL merged FIR filters. Electron. Lett. , 199 - 200
    6. 6)
      • Cardarilli, G.C., Nannarelli, Al., Re, M.: `Reducing power dissipation in FIR filters using the residue number system', Proc. 43rd IEEE Midwest Symp. on Circuits Syst., 2000, 1, p. 320–323.
    7. 7)
      • L. Kalamboukas , D. Nikolos , C. Efstathiou , H.T. Vergos , J. Kalamatianos . High-speed parallel-prefix modulo 2n−1 adders. IEEE Trans. Comput. , 673 - 680
    8. 8)
    9. 9)
      • Wang, Z., Jullien, G.A., Miller, W.C.: `An algorithm for multiplication modulo 2', Proc. 39th IEEE Midwest Symp. on Circuits Syst, 1996, p. 1301–1304.
    10. 10)
      • Wrzyszcz, A., Milford, D.: `A new modulo 2', Proc. Int. Conf. on Comput. Design (ICCD'93), 1995, p. 614–617.
    11. 11)
      • S. Piestrak . Design of squarers modulo a with low-level pipelining. IEEE Trans. Comput. , 31 - 41
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • J. Pihl , E.J. Aas . A multiplier and squarer generator for high performance DSP applications. Proc. 39th Midwest Symp. on Circuits Syst. , 109 - 112
    20. 20)
    21. 21)
      • G. Kempa , P. Jung . FPGA-based logic synthesis of squarers using VHDL. Proc. 2nd Int. Workshop on Field Program. Logic Appl. , 112 - 123
    22. 22)
    23. 23)
      • L. Dadda . (1965) Some schemes for parallel multipliers’, Alta Frequenza.
    24. 24)
    25. 25)
      • H. Bhatnagar . (2001) Advanced ASIC chip synthesis using synopsys design compiler, physical compiler, and primetime.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt_20060009
Loading

Related content

content/journals/10.1049/iet-cdt_20060009
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address