access icon free Lower complexity error location detection block of adjacent error correcting decoder for SRAMs

Multiple cell upsets (MCUs) caused by radiation is an important issue related to the reliability of embedded static random access memories (SRAMs). Multiple random and adjacent error correcting codes have been extensively employed for several years to protect stored data in SRAMs against MCUs. A compact and fast error correcting codec is desirable in most of these applications. In this study, simplified expressions for error location detection (ELD) block for single error correction-double error detection-double adjacent error correction (SEC-DED-DAEC) and single error correction-double error detection-triple adjacent error correction (SEC-DED-TAEC) decoders have been obtained by employing Karnaugh map. The conventional SEC-DED-DAEC and SEC-DED-TAEC decoders have been designed and implemented in both field-programmable gate array and ASIC platforms by considering these simplified ELD expressions. In FPGA platform, the proposed design for SEC-DED-DAEC and SEC-DED-TAEC decoders require 1.37–28.40% improvement in area and maximum 14.74% improvement in delay compared to existing designs. Whereas ASIC-based designs provide 2.20–26.81% reduction in area and 0.30–28.96% reduction in delay compared to existing related works. So the proposed design can be considered as an efficient alternative of traditional adjacent error correcting decoders in resource constraint applications.

Inspec keywords: error correction codes; application specific integrated circuits; SRAM chips; field programmable gate arrays; decoding; error detection codes

Other keywords: error correction-double error detection; -triple adjacent error correction; Karnaugh map; error location detection block; SRAM; ASIC platforms; field-programmable gate array; adjacent error correcting codes; resource constraint applications; conventional SEC-DED-DAEC; multiple cell upsets; error correcting codec; multiple random error correcting codes; static random access memories; SEC-DED-TAEC decoders; adjacent error correcting decoder

Subjects: Logic and switching circuits; Codes; Semiconductor storage; Logic circuits; Memory circuits

References

    1. 1)
      • 18. Li, J., Reviriego, P., Xiao, L., et al: ‘Low delay single error correction and double adjacent error correction (SEC-DAEC) codes’, Microelectron. Reliab., 2019, 97, pp. 3137.
    2. 2)
      • 27. Saiz-Adalid, L.J., Gil, P., Ruiz, J.C., et al: ‘Ultrafast error correction codes for double error detection/correction’. Proc. 12th European Dependable Computing Conf. (EDCC), Gothenburg, 2016, pp. 108119.
    3. 3)
      • 8. Neale, A., Sachdev, M.: ‘A new SEC-DED error correction code subclass for adjacent MBU tolerance in embedded memory’, IEEE Trans. Device Mater. Rel., 2013, 13, (1), pp. 223230.
    4. 4)
      • 15. Neale, A., Jonkman, M., Sachdev, M.: ‘Adjacent-MBU-tolerant SEC-DED-TAEC-yAED codes for embedded SRAMs’, IEEE Trans. Circuits Syst.-II: Exp. Briefs, 2015, 62, (4), pp. 387391.
    5. 5)
      • 28. Saiz-Adalid, L.J., Morán, J.G., Tomás, D.G., et al: ‘Ultrafast codes for multiple adjacent error correction and double error detection’, IEEE Access, 2019, 7, pp. 151131151143.
    6. 6)
      • 21. Saiz-Adalid, L.J., Reviriego, P., Gil, P., et al: ‘MCU tolerance in SRAMs through low-redundancy triple adjacent error correction’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2015, 23, (10), pp. 23322336.
    7. 7)
      • 30. Adalid, L.J.S., Vicente, P.J.G., Tomás, D.G., et al: ‘unequal error control codes with selectable error detection and correction levels’. Proc. Int. Conf. on Computer Safety, Reliability, and Security, Springer, Berlin, Heidelberg, Toulouse, France, 2013, pp. 178189.
    8. 8)
      • 23. Das, A., Touba, N.A.: ‘Low complexity burst error correcting codes to correct MBUs in SRAMs’. Proc. 2018 on Great Lakes Symp. on VLSI, ACM, Chicago, IL, USA, 2018, pp. 219224.
    9. 9)
      • 17. Reviriego, P., Martínez, J., Pontarelli, S., et al: ‘A method to design SEC-DED-DAEC codes with optimized decoding’, IEEE Trans. Device Mater. Reliab., 2014, 14, (3), pp. 884889.
    10. 10)
      • 22. Li, J., Reviriego, P., Xiao, L., et al: ‘Extending 3-bit burst error-correction codes with quadruple adjacent error correction’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2018, 26, (2), pp. 221229.
    11. 11)
      • 3. Chen, C.L., Hsiao, M.Y.: ‘Error-correcting codes for semiconductor memory applications: A state-of-the-art review’, IBM J. Res. Develop., 1984, 28, (2), pp. 124134.
    12. 12)
      • 12. Ming, Z., Yi, X.L., Wei, L.H.: ‘New SEC-DED-DAEC codes for multiple bit upsets mitigation in memory’. Proc. IEEE/IFIP 20th Int. Conf. VLSI Syst. Chip, Hong Kong, People's Republic of China, 2011, pp. 254259.
    13. 13)
      • 13. Dutta, A.: ‘Low cost adjacent double error correcting code with complete elimination of miscorrection within a dispersion window for multiple bit upset tolerant memory’. Proc. IEEE/IFIP 20th Int. Conf. VLSI Syst. Chip, Santa Cruz, CA, USA, 2012, pp. 287290.
    14. 14)
      • 9. Dutta, A., Touba, N.A.: ‘Multiple bit upset tolerant memory using a selective cycle avoidance based SEC-DED-DAEC code’. Proc. 25th IEEE VLSI Test Symp., Berkeley, CA, USA, 2007, pp. 349354.
    15. 15)
      • 2. Ibe, E., Taniguchi, H., Yahagi, Y., et al: ‘Impact of scaling on neutron-induced soft error in SRAMs from a 250 nm to a 22 nm design rule’, IEEE Trans. Electron Devices, 2010, 57, (7), pp. 15271538.
    16. 16)
      • 6. Reviriego, P., Maestro, J.A., Baeg, S., et al: ‘Protection of memories suffering MCUs through the selection of the optimal interleaving distance’, IEEE Trans. Nucl. Sci., 2010, 57, (4), pp. 21242128.
    17. 17)
      • 16. Reviriego, P., Liu, S., Xiao, L., et al: ‘An efficient single and double-adjacent error correcting parallel decoder for the (24,12) extended golay code’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2016, 24, (4), pp. 16031606.
    18. 18)
      • 7. Baeg, S., Wen, S., Wong, R.: ‘SRAM interleaving distance selection with a soft error failure model’, IEEE Trans. Nucl. Sci., 2009, 56, (4 Part 2), pp. 21112118.
    19. 19)
      • 5. Hsiao, M.Y.: ‘A class of optimal minimum odd-weight-column SEC-DED codes’, IBM J. Res. Develop., 1970, 14, (4), pp. 395401.
    20. 20)
      • 24. Li, J., Reviriego, P., Xiao, L.: ‘Low delay 3-bit burst error correction codes’, J. Electron. Test., 2019, 35, (3), pp. 18.
    21. 21)
      • 10. Naseer, R., Draper, J.: ‘Parallel double error correcting code design to mitigate multi-bit upsets in SRAMs’. Proc 34th Eur. Solid State Circuits Conf., Edinburgh, UK, 2008, pp. 222225.
    22. 22)
      • 14. Neale, A.: ‘Design and analysis of an adjacent multi-bit error correcting code for nanoscale SRAMs’. PhD Thesis, 2014.
    23. 23)
      • 20. Maity, R.K., Samanta, J., Bhaumik, J.: ‘New compact SEC-DED-DAEC code for memory applications’. Proc. of the Second Int. Conf. on Communication, Devices and Computing, Lecture notes in Electrical Engineering., Springer, Singapore, Haldia, India, 2020, vol. 602, pp. 321329.
    24. 24)
      • 4. Hamming, R.W.: ‘Error correcting and error detecting codes’, Bell Sys. Tech. J., 1950, 29, pp. 147160.
    25. 25)
      • 25. Li, J., Xiao, L., Reviriego, P., et al: ‘Efficient implementations of 4-bit burst error correction for memories’, IEEE Trans. Circuits Syst. II: Exp. Briefs, 2018, 65, (12), pp. 20372041.
    26. 26)
      • 19. Maity, R.K., Samanta, J., Bhaumik, J.: ‘An area and power efficient double adjacent error correcting parallel decoder based on (24, 12) extended golay code’. Proc. IEEE Int. Conf. on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 2019, pp. 16.
    27. 27)
      • 1. Nicolaidis, M.: ‘Soft errors in modern electronic systemsvol. 41 (Springer Science and Business Media, France, 2010).
    28. 28)
      • 11. Pontarelli, S., Reviriego, P., Ottavi, M., et al: ‘Low delay single symbol error correction codes based on Reed Solomon codes’, IEEE Trans. Comput., 2013, 64, (5), pp. 14971501.
    29. 29)
      • 29. Morán, J.G., Adalid, L.J.S., Tomás, D.G., et al: ‘Improving error correction codes for multiple-cell upsets in space applications’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2018, 26, (10), pp. 21322142.
    30. 30)
      • 26. Jun, Y., Lee, Y.: ‘Single error correction, double error detection and double adjacent error correction with no mis-correction code’, IEICE Electron.C Exp., 2013, 10, (20), pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2019.0268
Loading

Related content

content/journals/10.1049/iet-cdt.2019.0268
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading