Your browser does not support JavaScript!

Single bit-line 11T SRAM cell for low power and improved stability

Single bit-line 11T SRAM cell for low power and improved stability

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study aims for a new 11T static random access memory (SRAM) cell that uses power gating transistors and transmission gate for low leakage and reliable write operation. The proposed cell has a separate read and write path which successfully improves read and write abilities. Furthermore, it solves the row half select disturbance and utilises a row-based virtual ground signal to eliminate unnecessary bit-line discharge in the un-selected row, thus decreasing energy consumption. The cell also achieves low power due to the stack effect. To show the effectiveness of the cell, its design metrics are compared with other published SRAM cells, namely, conventional 6T, 10T, 9T, and power-gated 9T (PG9T). In standby mode, from 6.71 to 7.37% leakage power reduction is observed for this cell at an operating voltage of 1.2 V and 29.21 to 58.68% & 32.74 to 71.11% improvement for write & read power over other cells. The proposed cell exhibits higher write and reads static noise margins with an improvement of 13.54 and 63.28%, respectively, compared to conventional 6T SRAM cell. The cell provides write delay improvement from 29.77 to 49.40% and read delay improvement from 7 to 12% compared to 9T, 10T, and PG9T, respectively.

Related content

This is a required field
Please enter a valid email address