Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Accelerated LiDAR data processing algorithm for self-driving cars on the heterogeneous computing platform

In recent years, light detection and ranging (LiDAR) has been widely used in the field of self-driving cars, and the LiDAR data processing algorithm is the core algorithm used for environment perception in self-driving cars. At the same time, the real-time performance of the LiDAR data processing algorithm is highly demanding in self-driving cars. The LiDAR point cloud is characterised by its high density and uneven distribution, which poses a severe challenge in the implementation and optimisation of data processing algorithms. In view of the distribution characteristics of LiDAR data and the characteristics of the data processing algorithm, this study completes the implementation and optimisation of the LiDAR data processing algorithm on an NVIDIA Tegra X2 computing platform and greatly improves the real-time performance of LiDAR data processing algorithms. The experimental results show that compared with an Intel® Core™ i7 industrial personal computer, the optimised algorithm improves feature extraction by nearly 4.5 times, obstacle clustering by nearly 3.5 times, and the performance of the whole algorithm by 2.3 times.

References

    1. 1)
      • 29. Ben-Nun, T., Sutton, M., Pai, S., et al: ‘Groute: an asynchronous multi-GPU programming model for irregular computations’. ACM SIGPLAN Notices, Austin, TX, USA, 2017, vol. 52, no. 8, pp. 235248.
    2. 2)
      • 38. Xu, S., Gregg, D.: ‘Exploiting hyper-loop parallelism in vectorization to improve memory performance on CUDA GPGPU’. 2015 IEEE Trustcom/BigDataSE/ISPA, Helsinki, Poland, 2015, vol. 3. pp. 5360.
    3. 3)
      • 9. Haythem, B., Fatma, S., Marwa, C., et al: ‘Accelerating Fourier descriptor for image recognition using GPU’, Appl. Math Inf. Sci., 2016, 10, (1), p. 297.
    4. 4)
      • 31. Zhang, J., Guo, H., Homg, F., et al: ‘Dynamic load balancing based on constrained k-d tree decomposition for parallel particle tracing’, IEEE Trans. Vis. Comput. Graph., 2018, 24, (1), pp. 954963.
    5. 5)
      • 19. Hawick, K.A., Coddington, P.D., James, H.A.: ‘Distributed frameworks and parallel algorithms for processing large-scale geographic data’, Parallel Comput., 2003, 29, (10), pp. 12971333.
    6. 6)
      • 14. Himmelsbach, M., Hundelshausen, F.V., Wuensche, H.-J., et al: ‘Fast segmentation of 3D point clouds for ground vehicles’. 2010 IEEE Intelligent Vehicles Symp., San Diego, CA, USA, 2010, pp. 560565.
    7. 7)
      • 33. Zhang, J., Guo, H., Yuan, X., et al: ‘Dynamic data repartitioning for load-balanced parallel particle tracing’. 2018 IEEE Pacific Visualization Symp. (PacificVis), Kobe, Japan, 2018, pp. 8695.
    8. 8)
      • 36. NVIDIA: ‘CUDA C best practices guide v10.0’. 2018. Available at https://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf.
    9. 9)
      • 21. Bedkowski, J.M., Röhling, T.: ‘Online 3D LIDAR Monte Carlo localization with GPU acceleration’, Ind. Robot., 2017, 44, (4), pp. 442456.
    10. 10)
      • 1. Himmelsbach, M., von Hundelshausen, F., Wünsche, H.-J.: ‘LiDAR-based perception for offroad navigation’. 3. Tagung Aktive Sicherheit durch Fahrerassistenz, 2008, pp. 19.
    11. 11)
      • 11. Rosenband, D.L.: ‘Inside Waymo's self-driving car: my favorite transistors’. 2017 Symp. on VLSI Circuits, Kyoto, Japan, 2017, pp. C20C22.
    12. 12)
      • 13. Douillard, B., Underwood, J., Kuntz, N., et al: ‘On the segmentation of 3D LIDAR point clouds’. 2011 IEEE Int. Conf. on Robotics and Automation, Shanghai, People's Republic of China, 2011, pp. 27982805.
    13. 13)
      • 22. Hamraz, H., Contreras, M.A., Zhang, J.: ‘A scalable approach for tree segmentation within small-footprint airborne LiDAR data’, Comput. Geosci., 2017, 102, pp. 139147.
    14. 14)
      • 2. Stepan, P., Kulich, M., Preucil, L.: ‘Robust data fusion with occupancy grid’, IEEE Trans. Syst. Man Cybern. C, Appl. Rev., 2005, 35, (1), pp. 106115.
    15. 15)
      • 17. Armstrong, M.P., Marciano, R.: ‘Massively parallel processing of spatial statistics’, Int. J. Geogr. Inf. Syst., 1995, 9, (2), pp. 169189.
    16. 16)
      • 15. Wang, D.Z., Posner, I., Newman, P., et al: ‘What could move? Finding cars, pedestrians and bicyclists in 3d laser data’. 2012 IEEE Int. Conf. on Robotics and Automation, Saint Paul, MN, USA, 2012, pp. 40384044.
    17. 17)
      • 4. Halatci, I., Brooks, C.A., Iagnemma, K.: ‘Terrain classification and classifier fusion for planetary exploration rovers’. 2007 IEEE Aerospace Conf., Big Sky, MN, USA, 2007, pp. 111.
    18. 18)
      • 26. Cao, V.-H., Chu, K.-X., Le-Khac, N.-A., et al: ‘Toward a new approach for massive LiDAR data processing’. 2015 2nd IEEE Int. Conf. on Spatial Data Mining and Geographical Knowledge Services (ICSDM), Fuzhou, People's Republic of China, 2015, pp. 135140.
    19. 19)
      • 18. Kerry, K.E., Hawick, K.A.: ‘Kriging interpolation on high-performance computers’. Int. Conf. on High-Performance Computing and Networking, Amsterdam, The Netherlands, 1998, pp. 429438.
    20. 20)
      • 30. Yu, Y., Huang, R., Wanget, W., et al: ‘SP-cache: load-balanced, redundancy-free cluster caching with selective partition’. SC18: Int. Conf. for High Performance Computing, Networking, Storage and Analysis, Dallas, TX, USA, 2018, pp. 113.
    21. 21)
      • 24. Zeng, X., He, W.: ‘GPGPU-based parallel processing of massive LiDAR point cloud’. MIPPR 2009: Medical Imaging, Parallel Processing of Images, and Optimization Techniques, vol. 7497, Int. Society for Optics and Photonics, Yichang, People's Republic of China, 2009, pp. 749716749716o-6.
    22. 22)
      • 6. Gulisano, V., Nikolakopoulos, Y., Tsigas, P., et al: ‘Deterministic real-time analytics of geospatial data streams through scalegate objects’. Proc. 9th ACM Int. Conf. on Distributed Event-Based Systems, Montreal, QC, Canada, 2015, pp. 316317.
    23. 23)
      • 27. Besta, M., Hoefler, T.: ‘Accelerating irregular computations with hardware transactional memory and active messages’. Proc. 24th Int. Symp. on High-Performance Parallel and Distributed Computing, New York, NY, USA, 2015, pp. 161172.
    24. 24)
      • 5. Fu, Z., Almgren, M., Landsiedel, O., et al: ‘Online temporal-spatial analysis for detection of critical events in cyber-physical systems’. 2014 IEEE Int. Conf. on Big Data, Washington, DC, USA, 2014, pp. 129134.
    25. 25)
      • 37. Garibotti, R., Ost, L., Butko, A., et al: ‘Exploiting memory allocations in clusterised many-core architectures’, IET Comput. Digit. Tech., 2019, 13, (4), pp. 302311.
    26. 26)
      • 20. Wang, H., Guan, X., Wu, H.: ‘A hybrid parallel spatial interpolation algorithm for massive LiDAR point clouds on heterogeneous CPU–GPU systems’, ISPRS. Int. J. Geoinf., 2007, 6, (11), pp. 363379.
    27. 27)
      • 7. Nikolakopoulos, Y., Papatriantafilou, M., Brauer, P., et al: ‘Highly concurrent stream synchronization in many-core embedded systems’. Proc. Third ACM Int. Workshop on Many-core Embedded Systems, New York, NY, USA, 2016, pp. 29.
    28. 28)
      • 34. NVIDIA: ‘Partner innovation: accelerating automotive breakthroughs’. 2017. Available at http://www.nvidia.com/object/automotive-partner-innovation.html.
    29. 29)
      • 12. Wan, G., Yang, X., Cai, R., et al: ‘Robust and precise vehicle localization based on multi-sensor fusion in diverse city scenes’. 2018 IEEE Int. Conf. on Robotics and Automation (ICRA), Brisbane, Australia, 2018, pp. 46704677.
    30. 30)
      • 3. Dima, C.S., Vandapel, N., Hebert, M.: ‘Classifier fusion for outdoor obstacle detection’. Proc. IEEE Int. Conf. on Robotics and Automation, 2004 (ICRA'04), New Orleans, LA, USA, 2004, vol. 1, pp. 665671.
    31. 31)
      • 25. Li, Z., Hodgson, M.E., Li, W.: ‘A general-purpose framework for parallel processing of large-scale LiDAR data’, Int. J. Digit. Earth, 2018, 11, (1), pp. 2647.
    32. 32)
      • 10. Bahri, H, Sayadi, F., Khemiri, R., et al: ‘Image feature extraction algorithm based on CUDA architecture: case study GFD and GCFD’, IET Comput. Digit. Tech., 2017, 11, (4), pp. 125132.
    33. 33)
      • 23. Najdataei, H., Nikolakopoulos, Y., Gulisano, V., et al: ‘Continuous and parallel LiDAR point-cloud clustering’. 2018 IEEE 38th Int. Conf. on Distributed Computing Systems (ICDCS), Vienna, Austria, 2018, pp. 671684.
    34. 34)
      • 39. NVIDIA: ‘CUDA for Tegra v10.1’. 2019. Available at https://docs.nvidia.com/pdf/CUDA-for-Tegra-AppNote.pdf.
    35. 35)
      • 40. Zhang, Y., Xing, Z., Tang, C., et al: ‘Locality-protected cache allocation scheme with low overhead on GPUs’, IET Comput. Digit. Tech., 2017, 12, (3), pp. 8794.
    36. 36)
      • 28. Tang, X., Pattnaik, A., Jiang, H., et al: ‘Controlled kernel launch for dynamic parallelism in GPUs’. 2017 IEEE Int. Symp. on High Performance Computer Architecture (HPCA), Austin, TX, USA, 2017, pp. 649660.
    37. 37)
      • 16. Zermas, D., Izzat, I., Papanikolopoulos, N., et al: ‘Fast segmentation of 3d point clouds: a paradigm on LiDAR data for autonomous vehicle applications’. 2017 IEEE Int. Conf. on Robotics and Automation (ICRA), Singapore, Singapore, 2017, pp. 50675073.
    38. 38)
      • 8. Zacheilas, N., Kalogeraki, V., Nikolakopoulos, Y., et al: ‘Maximizing determinism in stream processing under latency constraints’. Proc. 11th ACM Int. Conf. on Distributed and Event-based Systems, Barcelona, Spain, 2017, pp. 112123.
    39. 39)
      • 32. Kumar, N., Prakash Vidyarthi, D.: ‘A hybrid heuristic for load-balanced scheduling of heterogeneous workload on heterogeneous systems’, Comput. J., 2018, 62, (2), pp. 276291.
    40. 40)
      • 35. NVIDIA: ‘CUDA C programming guide v10.0’. 2018. Available at https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2019.0166
Loading

Related content

content/journals/10.1049/iet-cdt.2019.0166
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address