Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Multi-core hardware realisation of the quasi maximum likelihood PPS estimator

Multi-core hardware realisation of the quasi maximum likelihood algorithm as the state-of-the-art estimator of polynomial phase signals (PPSs) is proposed in this study. Developed multiple-clock-cycle realisation is suitable for real-time implementation. To prove this, the proposed design is implemented on a field programmable gate array circuit. The hardware realisation is tested and verified on PPSs corrupted with various amounts of the Gaussian noise. Obtained results are compared with software simulations showing excellent match between the proposed system-based and the software-based outputs.

References

    1. 1)
      • 28. Jovanovski, S., Ivanović, V.N.: ‘Signal adaptive pipelined hardware design of time-varying optimal filter for highly nonstationary FM signal estimation’, J. Signal. Process. Syst., 2011, 62, (3), pp. 287300.
    2. 2)
      • 9. Boashash, B.: ‘Time frequency signal analysis and processing: a comprehensive reference’ (Academic Press, Elsevier, Amsterdam, 2016, 2nd edn.).
    3. 3)
      • 17. Brnović, N.R., Djurović, I., Ivanović, V.N., et al: ‘Hardware implementation of the quasi maximum likelihood estimator core for polynomial phase signals’, IET Circuits Devices Syst., 2019, 13, (2), pp. 131138.
    4. 4)
      • 20. Djurović, I.: ‘Quasi ML algorithm for 2-D PPS estimation’, Multidimens. Signals Syst., 2017, 28, (2), pp. 371389.
    5. 5)
      • 27. Ivanović, V.N., Stanković, L.J., Petranović, D.: ‘Finite word-length effects in implementation of algorithms for time-frequency signal analysis’, IEEE Trans. Signal Process., 1998, 46, (7), pp. 20352041.
    6. 6)
      • 14. Ivanović, V.N., Daković, M., Djurović, I., et al: ‘Instantaneous frequency estimation by using time-frequency distributions’. Proc. IEEE Int. Conf. on Acoustic, Speech and Signal Processing (ICASSP 2001), UT, USA, Salt Lake City, May 2001, pp. 35213524.
    7. 7)
      • 19. Djurović, I., Simeunović, M., Wang, P.: ‘Cubic phase function: a simple solution for polynomial phase signal analysis’, Signal Process., 2017, 135, pp. 4866.
    8. 8)
      • 7. Djurović, I., Simeunović, M., Djukanović, S., et al: ‘A hybrid CPF-HAF estimation of polynomial-phase signals: detailed statistical analysis’, IEEE Trans. Signal Process., 2012, 60, (10), pp. 50105023.
    9. 9)
      • 11. Djurović, I., Stanković, L.J.: ‘STFT-based estimator of polynomial phase signals’, Signal Process., 2012, 92, (11), pp. 27692774.
    10. 10)
      • 1. Peleg, S., Porat, B.: ‘Estimation and classification of polynomial-phase signals’, IEEE Trans. Inf. Th., 1991, 37, pp. 422430.
    11. 11)
      • 25. Ivanović, V.N., Jovanovski, S.: ‘Signal adaptive system for space/spatial–frequency analysis’, EURASIP J. Adv. Signal Process., 2009, 2009, pp. 116.
    12. 12)
      • 15. Daković, M., Ivanović, V.N., Stanković, L.J.: ‘On the S-method based instantaneous frequency estimation’. Proc. Seventh Int. Symp. on Signal Processing and its Applications (ISSPA 2003), Paris, France, July 01–04, 2003, pp. 605608.
    13. 13)
      • 4. McKilliam, R.G., Quinn, B.G., Clarkson, I.V.L., et al: ‘Polynomial phase estimation by least squares phase unwrapping’, IEEE Trans. Signal Process., 2014, 62, pp. 19621975.
    14. 14)
      • 30. Ivanović, V.N., Radović, N., Jovanovski, S.: ‘Real–time design of space/spatial–frequency optimal filter’, Electron. Lett., 2010, 46, (25), pp. 16961697.
    15. 15)
      • 2. Boashash, B., Ali Khan, N., Ben-Jabeur, T.: ‘Time-frequency features for pattern recognition using high-resolution TFDs: A tutorial review’, Digit. Signal Process., 2015, 40, pp. 130.
    16. 16)
      • 29. Ivanović, V.N., Jovanovski, S., Radović, N.: ‘Superior execution time design of optimal (Wiener) time-frequency filter’, Electron. Lett., 2016, 52, (17), pp. 14401442.
    17. 17)
      • 12. Djurović, I., Simeunović, M.: ‘Review of the quasi maximum likelihood estimator for polynomial phase signals’, Digit. Signal Process., 2018, 72, pp. 5974.
    18. 18)
      • 3. Wang, Y., Jiang, Y.: ‘Inverse synthetic aperture radar imaging of maneuvering target based on the product generalized cubic phase function’, IEEE Geosci. Remote Sens. Lett., 2011, 8, (5), pp. 958962.
    19. 19)
      • 18. Brnović, N.R., Djurović, I., Ivanović, V.N., et al: ‘System for QML algorithm realization’. Proc. Seventh IEEE Mediterranean Conf. on Embedded Computing (MECO 2018), Budva, Montenegro, June 10–14, 2018, pp. 343346.
    20. 20)
      • 8. Papoulis, A.: ‘Signal analysis’ (McGraw-Hill, New York, USA, 1997).
    21. 21)
      • 10. Djurović, I., Stanković, L.J.: ‘Quasi maximum likelihood estimator of polynomial phase signals’, IET Signal Process., 2014, 13, (4), pp. 347359.
    22. 22)
      • 31. Ivanović, V.N., Radović, N.: ‘Signal adaptive hardware implementation of a system for highly nonstationary two-dimensional FM signal estimation’, AEUE – Int.J. Electron. Commun., 2015, 69, (12), pp. 18541867.
    23. 23)
      • 5. Friedlander, B., Francos, J.M.: ‘Estimation of amplitudes and phase parameters of multicomponent signals’, IEEE Trans. Signal Process., 1995, 43, (4), pp. 917926.
    24. 24)
      • 23. Djurović, I.: ‘On parameters of the QML PPS estimator’, Signal Process., 2015, 116, pp. 16.
    25. 25)
      • 13. Amin, M.G., Feng, K.D.: ‘Short time Fourier transform using cascade filter structures’, IEEE Trans. Circuits Syst.–II: Analog Digital Signal Process., 1995, 42, (10), pp. 631641.
    26. 26)
      • 21. Djurović, I.: ‘QML-RANSAC: PPS and FM signals estimation in heavy noise environments’, Signal Process., 2017, 130, pp. 142151.
    27. 27)
      • 22. Stanković, L.J., Djurović, I., Stanković, S., et al: ‘Instantaneous frequency in time-frequency analysis: enhanced concepts and performance of estimation algorithms’, Digit. Signal Process., 2014, 35, pp. 113.
    28. 28)
      • 6. Barbarossa, S., Petrone, V.: ‘Analysis of polynomial-phase signals by the integrated generalized ambiguity function’, IEEE Trans. Signal Process., 1997, 45, (2), pp. 316327.
    29. 29)
      • 26. Stanković, S., Stanković, L.J., Ivanović, V.N., et al: ‘An architecture for the VLSI design of systems for time-frequency analysis and time-varying filtering’, Ann. Telecommun., 2002, 57, (9/10), pp. 974995.
    30. 30)
      • 24. Ivanović, V.N., Jovanovski, S.: ‘Signal adaptive system for time–frequency analysis’, Electron. Lett., 2008, 44, (21), pp. 12791280.
    31. 31)
      • 16. O'Shea, P.: ‘On refining polynomial phase signal parameter estimates’, IEEE Trans. Aerospace Electron. Syst., 2010, 46, (3), pp. 978987.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2019.0114
Loading

Related content

content/journals/10.1049/iet-cdt.2019.0114
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address