Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free VLSI implementation of anti-notch lattice structure for identification of exon regions in Eukaryotic genes

In a Eukaryotic gene, identification of exon regions is crucial for protein formation. The periodic-3 property of exon regions has been used for its identification. An anti-notch infinite impulse response (IIR) filter is mostly employed to recognise this periodic-3 property. The lattice structure realisation of anti-notch IIR filter requires less hardware over direct from-II structures. In this study, a hardware implementation of IIR anti-notch filter lattice structure is carried out on Zynq-series (Zybo board) field programmable gate array (FPGA). The performance of hardware design has been improved using techniques like retiming, pipelining and unfolding and finally assessed on various Eukaryotic genes. The hardware implementation reduces the time frame to analyse the DNA sequence of Eukaryotic genes for protein formation, which plays a significant role in detecting individual diseases from genetic reports. Here, the performance evaluation is carried out in MATLAB simulation environment and the results are found similar. Application-specific integrated circuit (ASIC) implementation of the anti-notch filter lattice structure is also carried out on CADENCE-RTL compiler. It is observed that the FPGA implementation is 31 to 34 times faster and ASIC implementation is 58 to 64 times faster compared to the results generated by MATLAB platform with similar prediction accuracy.

References

    1. 1)
      • 4. Tiwari, S., Ramachandran, S., Bhattacharya, A., et al: ‘Prediction of probable genes by Fourier analysis of genomic sequences’, Bioinformatics, 1997, 13, (3), pp. 263270.
    2. 2)
      • 29. Liu, Y., Parhi, K.K.: ‘Architectures for stochastic normalized and modified lattice IIR filters’. Proc. 49th Asilomar IEEE Conf. on Signals, Systems and Computers, Pacific Grove, CA, USA, November 2015, pp. 13511358.
    3. 3)
      • 36. Marcus, G., Hinojosa, P., Avila, A., et al: ‘A fully synthesizable single-precision, floating-point adder/substractor and multiplier in VHDL for general and educational use’. Proc. Fifth IEEE Int. Caracas Conf. on Devices, Circuits and Systems, Punta Cana, Dominican Republic, vol. 1, November 2004, pp. 319323.
    4. 4)
      • 37. ‘National center for biotechnology information (NCBI), national institutes of health (NIH), national library of medicine (NLM)’, accessed January 30, 2019. Available from: https://www.ncbi.nlm.nih.gov/.
    5. 5)
      • 26. Regalia, P.A., Mitra, S.K., Vaidyanathan, P.: ‘The digital all-pass filter: A versatile signal processing building block’, Proc. IEEE, 1988, 76, (1), pp. 1937.
    6. 6)
      • 22. Chung, J.G., Parhi, K.K.: ‘Pipelined lattice and wave digital recursive filtersvol. 344, (Springer Science & Business Media, USA, 2012).
    7. 7)
      • 10. Nair, A.S., Sreenadhan, S.P.: ‘A coding measure scheme employing electron-ion interaction pseudopotential (eiip)’, Bioinformation, 2006, 1, (6), p. 197.
    8. 8)
      • 39. Fawcett, T.: ‘An introduction to roc analysis’, Pattern Recognit. Lett., 2006, 27, (8), pp. 861874.
    9. 9)
      • 25. Vaidyanathan, P.P.: ‘Multirate systems and filter banks’ (Pearson Education India, India, 1993).
    10. 10)
      • 35. Kahan, W.: ‘IEEE standard 754 for binary floating-point arithmetic’, Lecture Notes on the Status of IEEE, 1996, 754, (94720-1776), p. 11.
    11. 11)
      • 33. Bharade, P., Joshi, Y., Manthalkar, R.: ‘Design and implementation of FIR lattice filter using floating point arithmetic in FPGA’. Proc. IEEE Int. Conf. on Information Processing (ICIP), Pune, India, December 2015, pp. 598603.
    12. 12)
      • 11. Vaidyanathan, P.P., Yoon, B.J.: ‘Digital filters for gene prediction applications’. Proc. Conf. Record of the Thirty-Sixth Asilomar IEEE Conf. on Signals, Systems and Computers, Pacific Grove, CA, USAvol. 1, November 2002, pp. 306310.
    13. 13)
      • 19. Abbasi, O., Rostami, A., Karimian, G.: ‘Identification of exonic regions in dna sequences using cross-correlation and noise suppression by discrete wavelet transform’, BMC bioinformatics, 2011, 12, (1), p. 430.
    14. 14)
      • 18. Marhon, S.A., Kremer, S.C.: ‘Prediction of protein coding regions using a wide-range wavelet window method’, IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB), 2016, 13, (4), pp. 742753.
    15. 15)
      • 27. Sahu, S.S.: ‘Analysis of Genomic and Proteomic Signals Using Signal Processing and Soft Computing Techniques’. Ph.D. thesis, NIT, Rourkela, Odisha, India, 2011.
    16. 16)
      • 14. Hota, M.K., Srivastava, V.K.: ‘Identification of protein coding regions using antinotch filters’, Digit. Signal Process., 2012, 22, (6), pp. 869877.
    17. 17)
      • 15. Farsani, M.S., Sahhaf, M.R.A., Abootalebi, V.: ‘Performance improvement of the goertzel algorithm in estimating of protein coding regions using modified anti-notch filter and linear predictive coding model’, J. Med. Signals. Sens., 2016, 6, (3), p. 130.
    18. 18)
      • 12. Ramachandran, P., Lu, W.S., Antoniou, A.: ‘Location of exons in dna sequences using digital filters’. Proc. IEEE Int. Symp. on Circuits and Systems, (ISCAS), Taipei, Taiwan, May 2009, pp. 23372340.
    19. 19)
      • 32. Bharade, P., Joshi, Y., Manthalkar, R.: ‘Design and implementation of IIR lattice filter using floating point arithmetic in FPGA’. Proc. IEEE Conf. on Advances in Signal Processing (CASP), Pune, India, June 2016, pp. 321326.
    20. 20)
      • 6. Rao, K.D., Swamy, M.: ‘Analysis of genomics and proteomics using DSP techniques’, IEEE Trans. Circuits Syst. I, Regul.Pap., 2008, 55, (1), pp. 370378.
    21. 21)
      • 28. Feiste, K.A., Swartzlander, E.: ‘High-speed VLSI implementation of IIR lattice filters’. Conf. Record of The Thirtieth Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, USA, November 1996, pp. 10571062.
    22. 22)
      • 1. Anastassiou, D.: ‘Genomic signal processing’, IEEE Signal Process. Mag., 2001, 18, (4), pp. 820.
    23. 23)
      • 23. Roy, S.D.: ‘Some recent work on lattice structures for digital signal processing’, Sadhana, 2014, 39, (6), pp. 12711294.
    24. 24)
      • 20. Saberkari, H., Shamsi, M., Heravi, H., et al: ‘A fast algorithm for exonic regions prediction in dna sequences’, J. Med. Signals. Sens., 2013, 3, (3), p. 139.
    25. 25)
      • 13. Meher, J., Meher, P.K., Dash, G.: ‘Improved comb filter based approach for effective prediction of protein coding regions in dna sequences’, J. Signal Inf. Process., 2011, 2, (2), p. 88.
    26. 26)
      • 8. Tuqan, J., Rushdi, A.: ‘A DSP approach for finding the codon bias in dna sequences’, IEEE. J. Sel. Top. Signal. Process., 2008, 2, (3), pp. 343356.
    27. 27)
      • 31. Agarwal, M., Rawat, T.K.: ‘VLSI implementation of fixed-point lattice wave digital filters for increased sampling rate’, Radioengineering J., 2016, 25, (4), pp. 821829.
    28. 28)
      • 38. Burset, M., Guigo, R.: ‘Evaluation of gene structure prediction programs’, genomics, 1996, 34, (3), pp. 353367.
    29. 29)
      • 5. Datta, S., Asif, A.: ‘A fast dft based gene prediction algorithm for identification of protein coding regions’. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, (ICASSP), Philadelphia, PA, USA, vol. 5, March 2005, pp. v653.
    30. 30)
      • 7. Hota, M., Srivastava, V.: ‘DSP technique for gene and exon prediction taking complex indicator sequence’. Proc. IEEE Region 10 Conf., (TENCON), Hyderabad, India, November 2008, pp. 16.
    31. 31)
      • 30. Aggarwal, M., Barsainya, R., Rawat, T.K.: ‘FPGA implementation of hilbert transformer based on lattice wave digital filters’. Proc. 4th Int. IEEE Conf. on Reliability, Infocom Technologies and Optimization (ICRITO)(Trends and Future Directions), Noida, India, September 2015, pp. 15.
    32. 32)
      • 24. Oppenheim, A.V.: ‘Discrete-time signal processing’ (Pearson Education India, 1999).
    33. 33)
      • 16. Mena.Chalco, J., Carrer, H., Zana, Y., et al: ‘Identification of protein coding regions using the modified gabor-wavelet transform’, IEEE/ACM Trans. Comput. Biol. Bioinf., 2008, 5, (2), pp. 198207.
    34. 34)
      • 21. Sahu, S.S., Panda, G.: ‘Identification of protein-coding regions in dna sequences using a time-frequency filtering approach’, Genomics Proteomics Bioinformatics, 2011, 9, (1), pp. 4555.
    35. 35)
      • 2. Alberts, B., Bray, D., Hopkin, K., et al: ‘Essential cell biology’ (Garland Science, USA, 2013).
    36. 36)
      • 9. Yin, C., Yau, S.S.T.: ‘Prediction of protein coding regions by the 3-base periodicity analysis of a dna sequence’, J. Theor. Biol., 2007, 247, (4), pp. 687694.
    37. 37)
      • 3. Vaidyanathan, P.: ‘Genomics and proteomics: A signal processor's tour’, IEEE Circuits Syst. Mag., 2004, 4, (4), pp. 629.
    38. 38)
      • 17. Hota, M.K., Srivastava, V.K.: ‘Identification of protein-coding regions using modified gabor-wavelet transform with signal boosting technique’, Int. J. Comput. Biol. Drug Des, 2010, 3, (4), pp. 259270.
    39. 39)
      • 34. Parhi, K.K.: ‘VLSI digital signal processing systems: design and implementation’ (John Wiley & Sons, UK, 2007).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2019.0086
Loading

Related content

content/journals/10.1049/iet-cdt.2019.0086
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address