http://iet.metastore.ingenta.com
1887

Delay performance due to thermal variation on field-programmable gate array via the adoption of a stable ring oscillator

Delay performance due to thermal variation on field-programmable gate array via the adoption of a stable ring oscillator

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Thermal issues are rapidly evolving in the field-programmable gate arrays (FPGAs) and are being intensely studied as these issues appear to significantly affect the delay performance of FGPAs. A ring oscillator has been widely used as a digital temperature sensor to sense this thermal effect on FPGAs. The delay generated by the ring oscillator will vary depending on the temperature environment due to negative bias temperature instability, hot carrier injection and electromigration. It is therefore critical to adopt an accurate ring oscillator design to effectively measure the delay in FGPAs. In this study, a digital temperature sensor with a stable ring oscillator is proposed. Measurement periods of 512 and 4096 clock cycles have been implemented and the relationship between temperature, delay and total count has been established. The results show that as the temperature increases to 100°C, the delay decreases by 3.99 and 33.98% for 512 and 4096 clock cycles, respectively. It has been found that in order to reduce the degradation effect on the Virtex-6 FPGA, adopting a measurement period of 512 clock cycles is the best method. The measured data is successfully validated through a set of simulations. Thus, it may benefit a system designer and industrial player, especially in designing temperature-based FPGAs.

References

    1. 1)
      • 1. Lu, W., Hu, Y., Ye, J., et al: ‘Going cooler with timing-constrained TeSHoP: a temperature sensing-based hotspot-driven placement technique for FPGAs’, IEEE Trans. Very Large Scale Integr. Syst., 2017, 25, (9), pp. 25252537.
    2. 2)
      • 2. Hariharan, G., Chaware, R., Singh, I., et al: ‘A comprehensive reliability study on a CoWos 3D IC package’. Proc. - Electronic Components and Technology Conf., San Diego, CA, USA, 2015, pp. 573577.
    3. 3)
      • 3. Wang, L., Hao, Y., Wei, Z., et al: ‘Thermal calibration of MEMS inertial sensors for an FPGA-based navigation system’. Proc. - 3rd Int. Conf. Intell. Networks Intell. Syst. ICINIS 2010, Shenyang, China, 2010, pp. 139143.
    4. 4)
      • 4. Huang, Z.C., Chen, C.K., Tsay, R.S.: ‘AROMA: A highly accurate microcomponent-based approach for embedded processor power analysis’. 20th Asia South Pacific Des. Autom. Conf. ASP-DAC 2015, Chiba, Japan, 2015, pp. 761766.
    5. 5)
      • 5. Shin, J.Y., Kurdahi, F., Dutt, N.: ‘Cooperative on-chip temperature estimation using multiple virtual sensors’, IEEE Embed. Syst. Lett., 2015, 7, (2), pp. 3740.
    6. 6)
      • 6. Tahoori, M.B., Kiamehr, S., Firouzi, F., et al: ‘Extending standard cell library for aging mitigation’, IET Comput. Digit. Tech., 2015, 9, (4), pp. 206212.
    7. 7)
      • 7. Kuo, W.S., Wang, M., Chen, E., et al: ‘Thermal investigations of 3D FCBGA packages with TSV technology’. 2008 3rd Int. Microsystems, Packag. Assem. Circuits Technol. Conf. IMPACT 2008, Taipei, Taiwan, 2008, pp. 251254.
    8. 8)
      • 8. Vincent, L., Beigne, E., Lesecq, S., et al: ‘Dynamic variability monitoring using statistical tests for energy efficient adaptive architectures’, IEEE Trans. Circuits Syst. I Regul. Pap., 2014, 61, (6), pp. 17411754.
    9. 9)
      • 9. Hashamdar, T., Noori, H.: ‘Thermal management of FPGA-based embedded systems at operating system level’. CSI Symp. on Real-Time and Embedded Systems and Technologies, RTEST 2015, Tehran, Iran, 2015, pp. 38.
    10. 10)
      • 10. Lefebvre, C.A., Rubio, L., Montero, J.L.: ‘Digital thermal sensor based on ring-oscillators in zynq Soc technology’. THERMINIC 2016 - 22nd Int. Work. Therm. Investig. ICs Syst., Budapest, Hungary, 2016, pp. 276278.
    11. 11)
      • 11. Wan, X., Wu, J., Shen, X.: ‘Maximal lifetime scheduling for roadside sensor networks with survivability k’, IEEE Trans. Veh. Technol., 2015, 64, (11), pp. 53005313.
    12. 12)
      • 12. Taheri, G., Khonsari, A., Entezari-Maleki, R., et al: ‘Temperature-aware dynamic voltage and frequency scaling enabled MPSoC modeling using stochastic activity networks’, Microprocess. Microsyst., 2018, 60, pp. 1523.
    13. 13)
      • 13. Boemo, E., Lopez-Buedo, S.: ‘Thermal monitoring on FPGAs using ring-oscillators’, Int. Work. F. Program. Log. Appl. (FPL), IEEE, 1997, 97, pp. 6978.
    14. 14)
      • 14. Bhardwaj, S., Wang, W., Vattikonda, R., et al: ‘Scalable model for predicting the effect of negative bias temperature instability for reliable design’, IET Circuits, Devices Syst., 2008, 2, (5), pp. 361371.
    15. 15)
      • 15. Sayed, M.A., Jones, P.H.: ‘Characterizing non-ideal impacts of reconfigurable hardware workloads on ring oscillator-based thermometers’. Proc. - 2011 Int. Conf. Reconfigurable Comput. FPGAs, ReConFig 2011, Cancun, Mexico, 2011, pp. 9298.
    16. 16)
      • 16. Tarawneh, G., Mak, T., Yakovlev, A.: ‘Intra-chip physical parameter sensor for FPGAS using flip-flop metastability’. Proc. - 22nd Int. Conf. on Field Programmable Logic and Applications, FPL 2012, Oslo, Norway, 2012, pp. 373379.
    17. 17)
      • 17. Weber, P., Zagrabski, M., Wojciechowski, B., et al: ‘Calibration of RO-based temperature sensors for a toolset for measuring thermal behavior of FPGA devices’, Microelectron. J., 2014, 45, pp. 17531763.
    18. 18)
      • 18. Sato, Y., Monden, M., Miyake, Y., et al: ‘Reduction of NBTI-induced degradation on ring oscillators in FPGA’. Proc. IEEE Pacific Rim Int. Symp. Dependable Comput. PRDC, Singapore, 2014, pp. 5967.
    19. 19)
      • 19. Kodýtek, F., Lórencz, R., Buček, J.: ‘Improved ring oscillator PUF on FPGA and its properties’, Microprocess. Microsyst., 2016, 47, pp. 5563.
    20. 20)
      • 20. Sahoo, S.R., Kumar, S., Mahapatra, K.: ‘A novel configurable ring oscillator PUF with improved reliability using reduced supply voltage’, Microprocess. Microsyst., 2018, 60, pp. 4052.
    21. 21)
      • 21. Böhl, E.: ‘Simple true random number generator for any semiconductor technology’, IET Comput. Digit. Tech., 2014, 8, (6), pp. 239245.
    22. 22)
      • 22. Khan, A.A., Sen, G.R.: ‘A linear thermistor-based temperature-to-frequency’, IEEE Trans. Instrum. Meas., 1985, IM–34, (1), pp. 8586.
    23. 23)
      • 23. Ghaderi, Z., Ebrahimi, M., Navabi, Z., et al: ‘SENSIBle: a highly scalable SENsor DeSIgn for path-based age monitoring in FPGAs’, IEEE Trans. Comput., 2017, 66, (5), pp. 919926.
    24. 24)
      • 24. Boemo, E., López-Buedo, S.: ‘Thermal monitoring on FPGAs using ring-oscillators’. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), London, UK, 1997, pp. 6978.
    25. 25)
      • 25. Princewill, A., Ayodeji, O., Kayode, A.: ‘A field programmable gate array-based digital temperature sensor’. 4th Mediterr. Conf. Embed. Comput. MECO-2015 Budva, Motenegro, 2015, pp. 6467.
    26. 26)
      • 26. Verma, S., Singh, S., Pal, B.B., et al: ‘Robust study and design of a low power CMOS CSVCO using 45 nm technology’, Indian J. Sci. Technol., 2016, 9, (44), pp. 14.
    27. 27)
      • 27. Gujja, S.: ‘Temperature variation effects on asynchronous PUF design using FPGAs’, University of Toledo, 2014.
    28. 28)
      • 28. Zick, K.M., Hayes, J.P.: ‘Low-cost sensing with ring oscillator arrays for healthier reconfigurable systems’, ACM Trans. Reconfigurable Technol. Syst., 2012, 5, (1), pp. 126.
    29. 29)
      • 29. Payá-Vayá, G., Bartels, C., Blume, H.: ‘Small footprint synthesizable temperature sensor for FPGA devices’, J. Syst. Archit., 2017, 76, pp. 2838.
    30. 30)
      • 30. Wojtkowski, W., Zankiewicz, A.: ‘Parallel RF power amplifiers temperature monitoring system based on FPGA device’, IFAC-PapersOnLine, 2018, 51, (6), pp. 414419.
    31. 31)
      • 31. Chen, C.C., Chen, C.L., Lin, Y.: ‘All-digital time-domain CMOS smart temperature sensor with on-chip linearity enhancement’, Sensors (Switzerland), 2016, 16, (2), p. 176.
    32. 32)
      • 32. Christoph, R., Andreas, A., Happe, M., et al: ‘Exploration of ring oscillator design space for temperature measurements on FPGAs’. F. Program. Log. Appl. (FPL), 2012 22nd Int. Conf., Oslo, Norway, 2012, pp. 559562.
    33. 33)
      • 33. Jones, P.H., Lockwood, J.W., Cho, Y.H.: ‘A thermal management and profiling method for reconfigurable hardware applications’. F. Program. Log. Appl. 2006. FPL'06. Int. Conf., Madrid, Spain, 2006, pp. 17.
    34. 34)
      • 34. Corporation A.: ‘RELIABILITY REPORT 59’, 2015.
    35. 35)
      • 35. Xilinx Corporation.: ‘Device Reliability Report’, UG116 (v10.1), 2015, 116, pp. 1104.
    36. 36)
      • 36. Mukherjee, A., Skadron, K.: ‘Measuring parameter variation on an FPGA using ring oscillators’, University of Virginia Department of Computer Science, Tech Report CS-2006, 2006.
    37. 37)
      • 37. Bakch, M.: ‘Complete digital design’ (McGraw-Hill, New York, NY, USA, 2003).
    38. 38)
      • 38. Woo, K., Meninger, S., Xanthopoulos, T., et al: ‘Dual-DLL-based CMOS all-digital temperature sensor for microprocessor thermal monitoring’. 2009 IEEE Int. Solid-State Circuits Conf. - Dig. Tech. Pap, San Fr. CA, 2009, Vol. 40, (8), pp. 6869.
    39. 39)
      • 39. Brown, B.A., Andel, T.R., Kim, Y.: ‘An FPGA noise resistant digital temperature sensor with auto calibration’, Commun. Comput. Inf. Sci., 2012, 285 CCIS, pp. 325335.
    40. 40)
      • 40. Verma, P., Mishra, R.A.: ‘Temperature dependence of propagation delay characteristic in LECTOR based CMOS circuit’, Spec. Issue Int. J. Comput. Appl. Electron. Inf. Commun. Eng., 2011, 81, (6), pp. 2830.
    41. 41)
      • 41. Mahapatra, S., Parihar, N.: ‘A review of NBTI mechanisms and models’, Microelectron. Reliab., 2018, 81, (January), pp. 127135.
    42. 42)
      • 42. Kachave, D., Sengupta, A., Neema, S., et al: ‘Effect of NBTI stress on DSP cores used in CE devices: threat model and performance estimation’, IET Comput. Digit. Tech., 2018, 12, (6), pp. 268278.
    43. 43)
      • 43. Liu, T., Chen, C.C., Cha, S., et al: ‘System-level variation-aware aging simulator using a unified novel gate-delay model for bias temperature instability, hot carrier injection, and gate oxide breakdown’, Microelectron. Reliab., 2015, 55, (9–10), pp. 13341340.
    44. 44)
      • 44. Qiao, F., He, Y., Ai, L., et al: ‘A comprehensive NBTI degradation model based on ring oscillator circuit’. 12th IEEE Int. Conf. Solid-State Integr. Circuit Technol. (ICSICT), 2014, 2014, Vol. 2, pp. 13.
    45. 45)
      • 45. Naouss, M., Marc, F.: ‘On-line sensing for healthier FPGA systesm’. FPGA ‘10 Proc. 18th Annu. ACM/SIGDA Int. Symp. F. Program. gate arrays, Monterey, CA, USA, 2010, pp. 239248.
    46. 46)
      • 46. Jovanovi, G., Stojcev, M., Stamenkovic, Z.: ‘A CMOS voltage controlled ring oscillator with improved frequency stability’, Sci. Publ. State Univ. Novi Pazar, Ser. A Appl. Math. Informatics Mech., 2010, 2, (1), pp. 19.
    47. 47)
      • 47. Franco, J.J.L., Boemo, E., Castillo, E., et al: ‘Ring oscillators as thermal sensors in FPGAs: experiments in low voltage’. Program. Log. Conf. (SPL), 2010 VI South., Ipojuca, Brazil, 2010, pp. 133137.
    48. 48)
      • 48. Happe, M., Agne, A., Plessl, C.: ‘Measuring and predicting temperature distributions on FPGAs at run-time’. 2011 Int. Conf. on Reconfigurable Computing and FPGAs, Cancun, 2011, pp. 5560.
    49. 49)
      • 49. Naouss, M., Marc, F.: ‘Design and implementation of a low cost test bench to assess the reliability of FPGA’, Microelectron. Reliab., 2015, 55, (9–10), pp. 13411345.
    50. 50)
      • 50. Sayed, M.A.: ‘Mitigating impacts of workload variation on ring-oscillator-based thermometers’, Master thesis, Iowa State University, 2012.
    51. 51)
      • 51. Liu, C.Q., Cao, Y., Chang, C.H.: ‘ACRO-PUF: a low-power, reliable and aging-resilient current starved inverter-based ring oscillator physical unclonable function’, IEEE Trans. Circuits Syst. I Regul. Pap., 2017, 64, pp. 31383149.
    52. 52)
      • 52. Peters, C.A.: ‘Statistics for analysis of experimental data Princeton university statistics for analysis of experimental data’, Environ. Eng. Process. Lab. Man., 2001, pp. 125.
    53. 53)
      • 53. Weber, P., Zagrabski, M., Wojciechowski, B., et al: ‘Toolset for measuring thermal behavior of FPGA devices’. 19th Int. Work. Therm. Investig. ICs Syst., 2013, Berlin, Germany, 2013, pp. 4853.
    54. 54)
      • 54. Jones, P.H., Moscola, J., Cho, Y.H., et al: ‘Adaptive thermoregulation for applications on reconfigurable devices’. 2007 Int. Conf. F. Program. Log. Appl., Amsterdam, The Netherlands, 2007, pp. 246253.
    55. 55)
      • 55. Zhang, S.: ‘Delay characterization in FPGA-based reconfigurable systems’, Master Thesis, University of Stuttgart, 2013.
    56. 56)
      • 56. Feiten, L., Oesterle, J., Martin, T., et al: ‘Systemic frequency biases in ring oscillator PUFs on FPGAs’, IEEE Trans. Multi-Scale Comput. Syst., 2016, 2, (3), pp. 174185.
    57. 57)
      • 57. Soni, M.K., Mehra, R.: ‘Optimized design and performance analysis of johnson counter using 45 nm technology’. 2016 IEEE 1st Int. Conf. Power Electron. Intell. Control Energy Syst. (ICPEICES), New Delhi, India, Delhi, 2016, pp. 16.
    58. 58)
      • 58. Soppa, W.M.: ‘Investigation and modeling of the surface mobility of’, IEEE Trans. Electron Devices, 1988, 35, (7), pp. 970977.
    59. 59)
      • 59. Jiménez Tejada, J.A., Luque Rodríguez, A., Godoy, A., et al: ‘Effects of gate oxide and junction nonuniformity on the DC and low-frequency noise performance of four-gate transistors’, IEEE Trans. Electron Devices, 2012, 59, (2), pp. 459467.
    60. 60)
      • 60. Mangalagiri, P., Bae, S., Krishnan, R., et al: ‘Thermal-aware reliability analysis for platform FPGAs’. 2008 IEEE/ACM Int. Conf. Comput. Des., San Jose, CA, USA, 2008, pp. 722727.
    61. 61)
      • 61. Lemczyk, T.F., Mack, B., Culham, J.R., et al: ‘PCB trace thermal analysis and effective conductivity’. 1991 Proc., Seventh IEEE Semiconductor Thermal Measurement and Management Symp., Phoenix, CA, USA, 1991, pp. 1522.
    62. 62)
      • 62. Mangalagiri, P., Narayanan, V.: ‘Lifetime reliability aware design flow techniques for dual-vdd based platform FPGAs’. 2009 IEEE Comput. Soc. Annu. Symp. VLSI, Tampa, FL, USA, 2009, pp. 6166.
    63. 63)
      • 63. Memik, S.O., Mukherjee, R., Ni, M., et al: ‘Optimizing thermal sensor allocation for microprocessors’, IEEE Trans. Comput. Des. Integr. Circuits Syst., 2008, 27, (3), pp. 516527.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2019.0072
Loading

Related content

content/journals/10.1049/iet-cdt.2019.0072
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address