Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

LUT-based high-speed point multiplier for Goldilocks-Curve448

LUT-based high-speed point multiplier for Goldilocks-Curve448

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Recent studies have shown that existing elliptic curve-based cryptographic standards provide backdoors for manipulation and hence compromise the security. In this regard, two new elliptic curves known as Curve448 and Curve25519 are recently recommended by IETF for transport layer security future generations. Hence, cryptosystems built over these elliptic curves are expected to play a vital role in the near future for secure communications. A high-speed elliptic curve cryptographic processor (ECCP) for the Curve448 is proposed in this study. The area of the ECCP is optimised by performing different modular operations required for the elliptic curve Diffie–Hellman protocol through a unified architecture. The critical path delay of the proposed ECCP is optimised by adopting the redundant-signed-digit technique for arithmetic operations. The segmentation approach is introduced to reduce the required number of clock cycles for the ECCP. The proposed ECCP is developed using look-up-tables (LUTs) only, and hence it can be ported to any field-programmable gate array family or standard ASIC libraries. The authors' ECCP design offers higher speed without any significant area overhead to recent designs reported in the literature.

References

    1. 1)
      • 22. Sutter, G., Deschamps, J., Imana, J.: ‘Efficient elliptic curve point multiplication using digit serial binary field operations’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 217225.
    2. 2)
      • 41. Ding, J., Li, S.: ‘A reconfigurable high-speed ECC processor over NIST primes’. Proc. IEEE Int. Conf. on Trustcom/BigDataSE/ICESS, Sydney, Australia, 2017, pp. 10641069.
    3. 3)
      • 13. Javeed, K., Wang, X.: ‘FPGA based high speed SPA resistant elliptic curve scalar multiplier architecture’, Int. J. Reconfigur. Comput., 2016, 2016, pp. 110. Available at https://doi.org/10.1155/2016/6371403.
    4. 4)
      • 23. Ansari, B., Hasan, M.A.: ‘High-performance architecture of elliptic curve scalar multiplication’, IEEE Trans. Comput., 2008, 57, (11), pp. 14431453.
    5. 5)
      • 7. ‘The Strange Story of Dual_EC_DRBG’. Available at https://www.schneier.com/blog/archives-/2007/11/the_strange_sto.html, accessed 15 January 2019.
    6. 6)
      • 40. Javeed, K., Wang, X.: ‘Efficient Montgomery multiplier for pairing and elliptic curve based cryptography’. Proc. IEEE Int. Symp. on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Manchester, UK, 2014, pp. 255260.
    7. 7)
      • 1. Koblitz, N.: ‘Elliptic curve cryptosystems’, Math. Comput., 1987, 48, pp. 203209.
    8. 8)
      • 5. Diffie, W., Hellman, M.: ‘New directions in cryptography’, IEEE Trans. Inf. Theory, 1976, 22, (6), pp. 644654.
    9. 9)
      • 20. Sasdrich, P., Güneysu, T.: ‘Closing the gap in RFC 7748: implementing Curve448 in hardware’, IACR Cryptology ePrint Archive, 2016.
    10. 10)
      • 28. Edwards, H.: ‘A normal form for elliptic curves’, Bull. Am. Math. Soc., 2007, 44, (3), pp. 393422.
    11. 11)
      • 36. Morales-Sandoval, M., Diaz-Perez, A.: ‘Scalable GF(p) Montgomery multiplier based on a digit-digit computation approach’, IET Comput. Digit. Tech., 2016, 10, (3), pp. 102109.
    12. 12)
      • 2. Miller, V.S.: ‘Use of elliptic curves in cryptography’. Proc. Springer Conf. on the Theory and Application of Cryptographic Techniques, Berlin, Germany, 1985, pp. 417426.
    13. 13)
      • 11. Hankerson, D., Menezes, A.J., Vanstone, S.: ‘Guide to elliptic curve cryptography’ (Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003).
    14. 14)
      • 30. Mangard, S., Oswald, E., Popp, T.: ‘Power analysis attacks: revealing the secrets of smart cards’ (Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007).
    15. 15)
      • 16. Marzouqi, H., Al-Qutayri, M., Salah, K., et al: ‘A high-speed FPGA implementation of an RSD based ECC processor’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2016, 24, (1), pp. 151164.
    16. 16)
      • 18. Alrimeih, H., Rakhmatov, D.: ‘Fast and flexible hardware support for ECC over multiple standard prime fields’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2014, 22, (12), pp. 26612674.
    17. 17)
      • 25. Hamburg, M.: ‘Ed448-goldilocks, a new elliptic curve’, IACR Cryptology ePrint Archive, 2015, 2015/625.
    18. 18)
      • 35. Shah, Y.A., Javeed, K., Azmat, S., et al: ‘A high-speed RSD-based flexible ECC processor for arbitrary curves over general prime field’, Int. J. Circuit Theory Appl., 2018, 46, (10), pp. 18581878.
    19. 19)
      • 4. Johnson, D., Menezes, A., Vanstone, S.: ‘The elliptic curve digital signature algorithm (ECDSA)’, Int. J. Inf. Secur., 2001, 1, (1), pp. 3663.
    20. 20)
      • 31. Montgomery, P.L.: ‘Speeding the pollard and elliptic curve methods of factorization’, Math. Comput., 1987, 48, (177), pp. 243264.
    21. 21)
      • 21. Karatsuba, A., Ofman, Y.: ‘Multiplication of many-digital numbers by automatic computers’, Dokl. Akad. Nauk SSSR, 1962, 145, (2), pp. 293294.
    22. 22)
      • 8. ‘RSA tells it developer customers’. Available at https://www.wired.com/2013/09/rsa-advisory-nsa-algorithm/, accessed 15 January 2019.
    23. 23)
      • 38. Javeed, K., Wang, X., Scott, M.: ‘Serial and parallel interleaved modular multipliers on FPGA platform’. Proc. IEEE Int. Conf. on Field Programmable Logic and Applications (FPL), London, UK, 2015, pp. 14.
    24. 24)
      • 33. Shah, Y.A., Javeed, K., Azmat, S., et al: ‘Redundant signed digit based high speed elliptic curve cryptographic processor’, J. Circuits Syst. Comput., 2018, 28, (5), pp. 132.
    25. 25)
      • 39. Javeed, K., Wang, X.: ‘Radix-4 and radix-8 booth encoded interleaved modular multipliers over general Fp’. Proc. IEEE Int. Conf. on Field Programmable Logic and Applications (FPL), Munich, Germany, 2014, pp. 16.
    26. 26)
      • 24. Roy, S., Rebeiro, C., Mukhopadhyay, D.: ‘Theoretical modeling of elliptic curve scalar multiplier on LUT-based FPGAs for area and speed’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2013, 21, (5), pp. 901909.
    27. 27)
      • 34. Alrimeih, H., Rakhmatov, D.: ‘Pipelined modular multiplier supporting multiple standard prime fields’. Proc. IEEE Conf. on Application-specific Systems, Architectures and Processors (ASAP), Zurich, Switzerland, 2014, pp. 48566.
    28. 28)
      • 3. Rivest, R., Shamir, A., Adleman, L.: ‘A method for obtaining digital signatures and public-key cryptosystems’, Commun. ACM, 1978, 21, pp. 120126.
    29. 29)
      • 37. Bigou, K., Tisserand, A.: ‘Single base modular multiplication for efficient hardware RNS implementations of ECC’. Proc. Springer Int. Workshop on Cryptographic Hardware and Embedded Systems (CHES), Saint Malo, France, 2015, pp. 123140.
    30. 30)
      • 12. Javeed, K., Wang, X., Scott, M.: ‘High performance hardware support for elliptic curve cryptography over general prime field’, Microprocess. Microsyst., 2017, 51, pp. 331342.
    31. 31)
      • 6. FIPS 186-2: ‘Digital signature standard’, 2000.
    32. 32)
      • 17. Loi, K.C.C., Ko, S.B.: ‘Scalable elliptic curve cryptosystem FPGA processor for NIST prime curves’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2015, 23, (11), pp. 27532756.
    33. 33)
      • 27. Bernstein, D.J., Lange, T.: ‘SafeCurves: choosing safe curves for elliptic-curve cryptography’. Available at https://safecurves.cr.yp.to/, accessed 16 January 2019.
    34. 34)
      • 14. Javeed, K., Wang, X.: ‘Low latency flexible FPGA implementation of point multiplication on elliptic curves over GF(p)’, Int. J. Circuit Theory Appl., 2017, 45, (2), pp. 214228.
    35. 35)
      • 9. ‘Crypto Forum Research Group (CFRG)’. Available at https://irtf.org/cfrg, accessed 15 January 2019.
    36. 36)
      • 32. Avizienis, A.: ‘Signed-digit number representations for fast parallel arithmetic’, IRE Trans. Electron. Comput., 1961, 3, pp. 389400.
    37. 37)
      • 19. Ananyi, K., Alrimeih, H., Rakhmatov, D.: ‘Flexible hardware processor for elliptic curve cryptography over NIST prime fields’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2009, 17, (8), pp. 10991112.
    38. 38)
      • 10. ‘Elliptic Curves for Security’. Available at https://tools.ietf.org/html/rfc7748, accessed 15 January 2019.
    39. 39)
      • 29. Kocher, P.C.: ‘Timing attacks on implementations of Diffie–Hellman, RSA, DSS, and other systems’. Proc. Annual Int. Cryptology Conf., Berlin, Germany, 1996, pp. 104113.
    40. 40)
      • 15. Hossain, M.S., Kong, Y., Saeedi, E., et al: ‘High performance elliptic curve cryptography processor over NIST prime fields’, IET Comput. Digit. Tech., 2016, 11, (1), pp. 3342.
    41. 41)
      • 26. Lochter, M., Merkle, J.: ‘Elliptic curve cryptography (ECC) brainpool standard curves and curve generation’, RFC 2010.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2019.0041
Loading

Related content

content/journals/10.1049/iet-cdt.2019.0041
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address