Energy-efficient and reliable in-memory classifier for machine-learning applications

Energy-efficient and reliable in-memory classifier for machine-learning applications

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Large-scale machine-learning (ML) algorithms require extensive memory interactions. Managing or reducing data movement can significantly increase the speed and efficiency of many ML tasks. Towards this end, the authors devise an energy efficient in-memory computing (IMC) kernel for linear classification and design an initial prototype. The authors achieve a power savings of over 6.4 times than a conventional discrete system while improving reliability by 54.67%. The authors employ a split-data-aware technique to manage process, voltage, and temperature variations and to achieve fair trade-offs between energy efficiency, area requirements, and accuracy. The authors utilise a trimodal architecture with a hierarchical tree structure to further decrease power consumption. The authors also explore alternatives to the hierarchical tree structure with a significantly reduced number of linear regression blocks, while maintaining a competitive classification accuracy. Overall, the scheme provides a fast, energy efficient, and competitively accurate binary classification kernel.


    1. 1)
      • 1. Shen, F., Shen, C., Liu, W., et al: ‘Supervised discrete hashing’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Boston, 2015.
    2. 2)
      • 2. Huang, H.Y., Lin, C.J.: ‘Linear and kernel classification: when to use which?’. Proc. of the 2016 SIAM Int. Conf. on Data Mining, Miami, FL, USA, 2016.
    3. 3)
      • 3. Cunningham, J.P., Ghahramani, Z.: ‘Linear dimensionality reduction: survey, insights, and generalizations’, J. Mach. Learn. Res., 2015, 16, pp. 28592900.
    4. 4)
      • 4. Steinhardt, J., Duchi, J.: ‘Minimax rates for memory-bounded sparse linear regression’. Proc. of the 28th Conf. on Learning Theory, Paris, France, 2015.
    5. 5)
      • 5. Horowitz, M.: ‘1.1 computing's energy problem (and what we can do about it)’. 2014 IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 2014.
    6. 6)
      • 6. Gao, M., Ayers, G., Kozyrakis, C.: ‘Practical near-data processing for in-memory analytics frameworks’. 2015 Int. Conf. on Parallel Architecture and Compilation (PACT), Washington, DC, USA, 2015.
    7. 7)
      • 7. Agrawal, A., Jaiswal, A., Lee, C., et al: ‘X-SRAM: enabling in-memory Boolean computations in CMOS static random access memories’, IEEE Trans. Circuits Syst. I, 2018, 65, (12), pp. 42194232.
    8. 8)
      • 8. Dong, Q., Jeloka, S., Saligane, M., et al: ‘A 4+2T SRAM for searching and in-memory computing with 0.3-V VDDmin’, IEEE J. Solid-State Circuits, 2018, 53, pp. 10061015.
    9. 9)
      • 9. Yu, H., Wang, Y., Chen, S., et al: ‘Energy efficient in-memory machine learning for data intensive image processing by non-volatile domain-wall memory’. Asia and South Pacific Design and Automation Conf., Suntec City, Singapore, 2014.
    10. 10)
      • 10. Kang, M., Shanbhag, N.R.: ‘In-memory computing architectures for sparse distributed memory’, IEEE Trans. Biomed. Circuits Syst., 2016, 10, (4), pp. 855863.
    11. 11)
      • 11. Kang, M., Gonugondla, S.K., Patil, A., et al: ‘A multi-functional in-memory inference processor using a standard 6T SRAM array’, IEEE J. Solid-State Circuits, 2018, 53, (2), pp. 642655.
    12. 12)
      • 12. Kang, M., Gonugondle, S., Shanbag, N.: ‘A 19.4 nJ/decision 364 k decisions/s in-memory random forest classifier in 6T SRAM array’. IEEE European Solid State Circuits Conf., Leuven, Belgium, 2017.
    13. 13)
      • 13. The MNIST database of handwritten digits’. Available at, accessed June 2018.
    14. 14)
      • 14. Gong, N., Jiang, S., Wang, J., et al: ‘Hybrid-cell register files design for improving NBTI reliability’, Microelectron. Reliab., 2012, 52, (9-10), pp. 18651869.
    15. 15)
      • 15. Vattikonda, R., Wang, W., Cao, Y.: ‘Modeling and minimization of PMOS NBTI effect for robust nanometer design’. Design Automation Conf., San Francisco, 2006.
    16. 16)
      • 16. Ahmed, F., Milor, L.: ‘NBTI resistant SRAM design’. 4th IEEE Int. Workshop on Advances in Sensors and Interfaces (IWASI), 2011, Savelletri di Fasano, Italy, 2011.
    17. 17)
      • 17. Bansal, B., Rahul, R., Jae-Joon, K., et al: ‘Impacts of NBTI and PBTI on SRAM static/dynamic noise margins and cell failure probability’, Microelectron. Reliab., 2009, 49, (6), pp. 642649.
    18. 18)
      • 18. Park, S.P., Kang, K., Roy, K.: ‘Reliability implications of bias-temperature instability in digital ICs’, IEEE Des. Test Comput., 2009, 26, (6), pp. 817.
    19. 19)
      • 19. Sanjay, V., Chris, H., Sapatnekar, S.: ‘Impact of NBTI on SRAM read stability and design for reliability’. Int. Symp. on Quality Electronic Design, San Jose, CA, USA, 2006.
    20. 20)
      • 20. Bhardwaj, S., Wang, W., Vattikonda, R., et al: ‘Predictive modeling of the NBTI effect for reliable design’. Custom Integrated Circuits Conf., San Jose, CA, USA, 2006.
    21. 21)
      • 21. Zhao, W., Cao, Y.: ‘New generation of predictive technology model for subub-45 nm early design exploration’, IEEE Trans. Electron Devices, 2006, 53, (11), pp. 28162823.
    22. 22)
      • 22. Yabuuchi, M., Kobayashi, K.: ‘Circuit characteristic analysis considering NBTI and PBTI-induced delay degradation’. IEEE Int. Meting For Future of Electron Devices, Kansai, 2012.
    23. 23)
      • 23. Bairy, B., Craig, T., Eshaghian-Wilner, M., et al: ‘Mitigating the impact of NBTI and PBTI degradation’, Global J. Technol. Optim., 2016, 7, (2), p. 195.
    24. 24)
      • 24. Chang, I.J., Mohapatra, D., Roy, K.: ‘A priority-based 6T/8T hybrid SRAM architecture for aggressive voltage scaling in video applications’, IEEE Trans. Circuits Syst. Video Technol., 2011, 21, (2), pp. 101112.
    25. 25)
      • 25. Zhang, J., Wang, Z., Verma, N.: ‘In-memory computation of a machine-learning classifier in a standard 6T SRAM array’, J. Solid-State Circuits, 2017, 52, (4), pp. 915924.
    26. 26)
      • 26. Jiang, S., Priya, S.R., Elango, N., et al: ‘An energy-efficient in-memory computing machine learning classifier scheme’. Int. Conf. on VLSI Design, Delhi, India, 2019.
    27. 27)
      • 27. Kim, J.K., Knag, P., Chen, T., et al: ‘A 640 m pixel/s 3.65 mW sparse event-driven neuromorphic object recognition processor with onn-chip learning’. IEEE Symp. on VLSI Circuits, Kyoto, Japan, 2015.
    28. 28)
      • 28. Kang, M., Lim, S., Gonugondla, S., et al: ‘An in-memory VLSI architecture for convolutional neural networks’, J. Emerg. Sel. Top. Circuits Syst., 2018, 8, (3), pp. 494505.
    29. 29)
      • 29. Moons, B., Verhelst, M.: ‘A 0.3–2.6 TOPS/w precision-scalable processor for real-time large-scale ConvNets’. IEEE Symp. on VLSI Circuits, Honolulu, HI, USA, 2016.
    30. 30)
      • 30. Lee, K.T., Kang, C.Y., Yoo, O.S., et al: ‘PBTI-associated high-temperature hot carrier degeneration of nMOSFETs with metal-gate/high-k dielectrics’, IEEE Electron Device Lett., 2008, 29, (4), pp. 389391.
    31. 31)
      • 31. Wang, W., Reddy, V., Yang, B., et al: ‘Statistical prediction of circuit aging under process variations’. Custom Integrated Circuits Conf., San Jose, CA, USA, 2008.

Related content

This is a required field
Please enter a valid email address