http://iet.metastore.ingenta.com
1887

Resilient training of neural network classifiers with approximate computing techniques for hardware-optimised implementations

Resilient training of neural network classifiers with approximate computing techniques for hardware-optimised implementations

For access to this article, please select a purchase option:

Buy eFirst article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

As Machine Learning applications increase the demand for optimised implementations in both embedded and high-end processing platforms, the industry and research community have been responding with different approaches to implement these solutions. This work presents approximations to arithmetic operations and mathematical functions that, associated with a customised adaptive artificial neural networks training method, based on RMSProp, provide reliable and efficient implementations of classifiers. The proposed solution does not rely on mixed operations with higher precision or complex rounding methods that are commonly applied. The intention of this work is not to find the optimal simplifications for specific deep learning problems but to present an optimised framework that can be used as reliably as one implemented with precise operations, standard training algorithms and the same network structures and hyper-parameters. By simplifying the ‘half-precision’ floating point format and approximating exponentiation and square root operations, the authors’ work drastically reduces the field programmable gate array implementation complexity (e.g. −43 and −57% in two of the component resources). The reciprocal square root approximation is so simple it could be implemented only with combination logic. In a full software implementation for a mixed-precision platform, only two of the approximations compensate the processing overhead of precision conversions.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2019.0036
Loading

Related content

content/journals/10.1049/iet-cdt.2019.0036
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address