http://iet.metastore.ingenta.com
1887

Hetro8T: power and area efficient approximate heterogeneous 8T SRAM for H.264 video decoder

Hetro8T: power and area efficient approximate heterogeneous 8T SRAM for H.264 video decoder

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Wide-spread availability of high-speed INTERNET and rapid increase of smart-phone users have significantly increased online video surfing. Video decoders like H.264/H.265/MPEG consume a significant amount of power in Static Random Access Memory (SRAM) buffers. In this study, the authors propose a 1 kb (32 × 32) heterogeneous 8T SRAM architectures with (2-lower order bits) and without truncation for H.264 video decoder. They have used heterogeneous sized SRAM design and bit-truncation techniques are used simultaneously to obtain low power memory design for the H.264 video decoder. They show that the proposed approximate memory used for H.264 video decoder provide high video quality even at low power and low area budget of 0.3 µW/pixel and 5.2 µm2/pixel, respectively, at 0.5 V and 20 MHz in UMC 28 nm CMOS technology. The proposed memory architecture is compared with existing approximate memories such as heterogeneous 6T, hybrid 8T/6T, all-identical 6T, and all-identical 8T SRAM memory. The results show that proposed memory architectures perform cumulatively better than existing techniques in terms of dynamic power, leakage power, and area.

References

    1. 1)
      • 1. Cisco systems, Inc: Available at https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html.
    2. 2)
      • 2. (2012) the digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the far east. December 2012’. Available at https://www.emc.com/collateral/analyst-reports/idc-digital-universe-united-states.pdf.
    3. 3)
      • 3. Kim, H., Chang, I.J., Lee, H.J.: ‘Optimal selection of SRAM bit-cell size for power reduction in video compression’, IEEE J. Emerg. Sel. Top. Circuits Syst., 2018, 8, pp. 431443.
    4. 4)
      • 4. Gong, N., Pourbakhsh, S.A., Chen, X., et al: ‘Spider: sizing-priority-based application-driven memory for mobile video applications’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2017, 25, (9), pp. 26252634.
    5. 5)
      • 5. Chang, I.J., Mohapatra, D., Roy, K.: ‘A priority-based 6T/8T hybrid SRAM architecture for aggressive voltage scaling in video applications’, IEEE Trans. Circuits Syst. Video Technol., 2011, 21, (2), pp. 101112.
    6. 6)
      • 6. Weste, N.H., Harris, D.: ‘CMOS VLSI design: a circuits and systems perspective’ (Pearson Education India, London, UK, 2015).
    7. 7)
      • 7. Kwon, J., Chang, I.J., Lee, I., et al: ‘Heterogeneous SRAM cell sizing for low-power H.264 applications’, IEEE Trans. Circuits Syst. I, Regul.Pap., 2012, 59, (10), pp. 22752284.
    8. 8)
      • 8. Ataei, S., Stine, J.E.: ‘A 64 KB approximate SRAM architecture for low-power video applications’, IEEE Embedded Sys. Lett., 2018, 10, (1), pp. 1013.
    9. 9)
      • 9. Gong, N., Jiang, S., Challapalli, A., et al: ‘Ultra-low voltage split-data-aware embedded SRAM for mobile video applications’, IEEE Trans. Circuits Syst. II, Express Briefs, 2012, 59, (12), pp. 883887.
    10. 10)
      • 10. Chen, D., Edstrom, J., Gong, Y., et al: ‘Viewer-aware intelligent efficient mobile video embedded memory’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2018, 26, (4), pp. 684696.
    11. 11)
      • 11. Surana, N., Mekie, J.: ‘Energy efficient single-ended 6T SRAM for multimedia applications’, IEEE Trans. Circuits Syst. II, Express Briefs, 2018, 66, pp. 10231027.
    12. 12)
      • 12. Kazimirsky, A., Teman, A., Edri, N., et al: ‘A 0.65-v, 500-mhz integrated dynamic and static ram for error tolerant applications’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2017, 25, (9), pp. 24112418.
    13. 13)
      • 13. Rabaey, J.M., Chandrakasan, A.P., Nikolic, B.: ‘Digital integrated circuits’, vol. 2 (Prentice hall, Englewood Cliffs, NJ, USA, 2002).
    14. 14)
      • 14. Chang, L., Montoye, R.K., Nakamura, Y., et al: ‘An 8T-SRAM for variability tolerance and low-voltage operation in high-performance caches’, IEEE J. Solid-State Circuits, 2008, 43, (4), pp. 956963.
    15. 15)
      • 15. Xu, Y., Das, H., Gong, Y., et al: ‘On mathematical models of optimal video memory design’, IEEE Trans. Circuits Syst. Video Technol., 2019.
    16. 16)
      • 16. Apalkov, D., Khvalkovskiy, A., Watts, S., et al: ‘Spin-transfer torque magnetic random access memory (STT-MRAM)’, ACM J. Emerg. Technol. Comput. Syst., 2013, 9, (2), p. 13.
    17. 17)
      • 17. Meinerzhagen, P., Teman, A., Giterman, R., et al: ‘Exploration of sub-VT and near-VT 2t gain-cell memories for ultra-low power applications under technology scaling’, J. Low Power Electron. Appl., 2013, 3, (2), pp. 5472.
    18. 18)
      • 18. Giterman, R., Teman, A., Meinerzhagen, P., et al: ‘Single-supply 3T gain-cell for low-voltage low-power applications’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2016, 24, (1), pp. 358362.
    19. 19)
      • 19. Giterman, R., Fish, A., Geuli, N., et al: ‘An 800-mhz mixed-VT 4t IFGC embedded dram in 28-nm cmos bulk process for approximate storage applications’, IEEE J. Solid-State Circuits, 2018, 53, (7), pp. 113.
    20. 20)
      • 20. Lin, C.C., Chen, J.W., Chang, H.C., et al: ‘A 160 k gates/4.5 KB SRAM H. 264 video decoder for HDTV applications’, IEEE J. Solid-State Circuits, 2007, 42, (1), pp. 170182.
    21. 21)
      • 21. Chien, S.Y., Huang, Y.W., Chen, C.Y., et al: ‘Hardware architecture design of video compression for multimedia communication systems’, IEEE Commun. Mag., 2005, 43, (8), pp. 123131.
    22. 22)
      • 22. Bharti, P.K., Surana, N., Mekie, J.: ‘Power and area efficient approximate heterogeneous 8T SRAM for multimedia applications’. 2019 32nd Int. Conf. on VLSI Design and 2019 18th Int. Conf. on Embedded Systems (VLSID), New Delhi, India, 2019, pp. 139144.
    23. 23)
      • 23. Available http://trace.eas.asu.edu/yuv.
    24. 24)
      • 24. Mahdiani, H.R., Ahmadi, A., Fakhraie, S.M., et al: ‘Bio-inspired imprecise computational blocks for efficient VLSI implementation of soft-computing applications’, IEEE Trans. Circuits Syst. I, Regul.Pap., 2010, 57, (4), pp. 850862.
    25. 25)
      • 25. Dalloo, A., Najafi, A., Garcia Ortiz, A.: ‘Systematic design of an approximate adder: the optimized lower part constant-or adder’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2018, 26, (8), pp. 15951599.
    26. 26)
      • 26. Zeinali, B., Karsinos, D., Moradi, F.: ‘Progressive scaled STT-ram for approximate computing in multimedia applications’, IEEE Trans. Circuits Syst. II, Express Briefs, 2018, 65, (7), pp. 938942.
    27. 27)
      • 27. Rizk, R., Rizk, D., Kumar, A., et al: ‘Demystifying emerging nonvolatile memory technologies: understanding advantages, challenges, trends, and novel applications’, IEEE Int. Symp. on Circuits and Systems (ISCAS), Sapporo, Japan, 1 May 2019, pp. 15.
    28. 28)
      • 28. Lai, S.: ‘Current status of the phase change memory and its future’. IEEE Int. Electron Devices Meeting, 2003. IEDM'03 Technical Digest, Washington, DC, USA, 2003, pp. 1011.
    29. 29)
      • 29. Sampson, A., Nelson, J., Strauss, K., et al: ‘Approximate storage in solid-state memories’, ACM Trans. Comput. Syst., 2014, 32, (3), p. 9.
    30. 30)
      • 30. Chang, M.T., Rosenfeld, P., Lu, S.L., et al: ‘Technology comparison for large last-level caches (l 3 cs): low-leakage SRAM, low write-energy STT-ram, and refresh-optimized EDRAM’. 2013 IEEE 19th Int. Symp. on High Performance Computer Architecture (HPCA2013), Shenzhen, China, 2013, pp. 143154.
    31. 31)
      • 31. Tikekar, M., Huang, C.T., Juvekar, C., et al: ‘A 249-mpixel/s hevc video-decoder chip for 4k ultra-hd applications’, IEEE J. Solid-State Circuits, 2014, 49, (1), pp. 6172.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2019.0019
Loading

Related content

content/journals/10.1049/iet-cdt.2019.0019
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address