Approach of genetic algorithm for power-aware testing of 3D IC

Approach of genetic algorithm for power-aware testing of 3D IC

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The interconnect between the cores of System-on-Chip (SOC) degrades the circuit performance by contributing to circuit delay and power consumption. To reduce this problem, SOC-based three-dimensional (3D) integrated circuit (IC) technology as a promising solution where multiple layers are stacked together decreasing the length of interconnect. However, 3D IC invites some new problems including more complexity in test generation. Testing of 3D IC requires test access architecture called Test Access Mechanism (TAM) for the purpose of transport of test stimuli to the cores placed in different layers. During testing due to increasing switching activity, any circuit demands higher power consumption and it becomes more acute for 3D IC. Moreover, testing of 3D ICs has other constraints. In this study, the authors address the issue of 3D IC testing using genetic algorithm-based approach to decrease test time. At first, available TAM width is partitioned into some fixed groups and they have to find partitioning of TAM and distribution of cores among layers with a goal to decrease test time. Next, they do the same considering, variable partitions with or without certain power limits. Experimental results establish the efficacy of the authors’ method.


    1. 1)
      • 1. Klumpp, A., Ramm, P., Wieland, R.: ‘3D-integration of silicon devices: a key technology for sophisticated products’. Proc. Design Automation Test Europe Conf. Exhibition (DATE), Dresden, Germany, 2010, pp. 16781683.
    2. 2)
      • 2. Lu, T., Srivastava, A.: ‘Modeling and layout optimization for tapered TSVs’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2015, 23, (12), pp. 31293132.
    3. 3)
      • 3. Lu, T., Serafy, C., Yang, Z., et al: ‘TSV-based 3-D ICs: design methods and tools’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2017, 36, (10), pp. 15931619.
    4. 4)
      • 4. Semiconductor Industry Association (SIA): In: International Technology Roadmap for Semiconductors (ITRS), 2013.
    5. 5)
      • 5. Pawlowski, J.T.: ‘Hybrid memory cube (HMC)’. Proc. IEEE Hot Chips 23 Symp. (HCS), Stanford, CA, USA, 2011, vol. 23, pp. 124.
    6. 6)
      • 6. Samsung: ‘Samsung starts mass producing industry's first 3D TSV technology based DDR4 modules for enterprise servers’. August2014. Available at
    7. 7)
      • 7. Kim, J.-S., et al: ‘A 1.2 V 12.8 GB/s 2 GB mobile wide-I/O DRAM with 4 × 128 I/Os using TSV based stacking’, IEEE J. Solid-State Circuits, 2012, 47, (1), pp. 107116.
    8. 8)
      • 8. Shulaker, M., Wu, T.F., Pal, A., et al: ‘Monolithic 3D integration of logic and memory: carbon nanotube FETs, resistive RAM, and silicon FETs’. Proc. IEEE Int. Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2014, pp.
    9. 9)
      • 9. Wu, T.-T., Huang, W.H., Yang, C.C., et al: ‘Sub-50 nm monolithic 3D IC with low-power CMOS inverter and 6T SRAM’. Proc. Int. Symp. VLSI Technology Systems Applications (VLSI-TSA), Hsinchu, Taiwan, 2015, pp. 12.
    10. 10)
      • 10. Harutal, T., Nakajima, T., Hashizume, J., et al: ‘4.6 a 1/2.3in 20Mpixel 3-layer stacked CMOS image sensor with DRAM’. IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, 2017, pp. 7677.
    11. 11)
      • 11. Semiconductor Industry Association (SIA). In: International Technology Roadmap for Semiconductors (ITRS), 2015.
    12. 12)
      • 12. IEEE Std.1500: ‘IEEE standard testability method for embedded core-based integrated circuits’ (IEEE, New York, 2005).
    13. 13)
      • 13. Wang, L.-T., Wu, C.-W., Xioquing, W.: ‘VLSI test principles and architectures: design for testability’ (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2006), pp. 587588.
    14. 14)
      • 14. Semiconductor Industry Association (SIA): In: International Technology Roadmap for Semiconductors (ITRS), 2011.
    15. 15)
      • 15. Marinissen, E.J., Zorian, Y.: ‘Guest editorial: special issue on testing of 3D stacked integrated circuits’, J. Electron. Test., Theory Appl. (JETTA), 2012, 28, pp. 1314.
    16. 16)
      • 16. SenGupta, B., Nikolov, D., Ingelsson, U., et al: ‘Test planning for core-based integrated circuits under power constraints’, J. Electron. Test., Theory Appl. (JETTA), 2017, 33, pp. 723.
    17. 17)
      • 17. Serafy, C., Bar-Cohen, A., Srivastava, A., et al: ‘Unlocking the true potential of 3-D CPUs with microfluidic cooling’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2016, 24, (4), pp. 15151523.
    18. 18)
      • 18. Girard, P., Nicolici, N., Wen, X.: ‘Power-aware testing and test strategies for low power devices’ (Springer, Boston, MA, USA, 2010), pp. 51176.
    19. 19)
      • 19. Huang, Y., Reddy, S.M., Cheng, W.-T., et al: ‘Optimal core wrapper width selection and SOC test scheduling based on 3-D bin packing algorithm’. Proc. Int. Test Conf., Baltimore, USA, 2002, pp. 7482.
    20. 20)
      • 20. Chou, R., Saluja, K.K., Agrawal, V.: ‘Scheduling tests for VLSI systems under power constraints’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 1997, 5, (2), pp. 175185.
    21. 21)
      • 21. Samii, S., Larsson, E., Chakrabarty, K., et al: ‘Cycle-accurate test power modeling and its application to SOC test scheduling’. Proc. Int. Test Conf. (ITC), 2006, pp. 1–10.
    22. 22)
      • 22. Pouget, J., Larsson, E., Peng, Z.: ‘SOC test time minimization under multiple constraints’. Proc. ATS, Xian, China, 2003, pp. 312317.
    23. 23)
      • 23. Samii, S., Selkala, M., Larsson, E., et al: ‘Cycle-accurate test power modeling and its application to SOC test architecture design and scheduling’, IEEE Trans. CAD Integr. Circuits Syst., 2008, 27, (5), pp. 973977.
    24. 24)
      • 24. Cui, X.-L., Cheng, W., Li, C.-R.: ‘Effective SOC test scheduling under peak power constraints based on the ant colony algorithm’, Microelectron. Comput., 2011, 7, pp. 58.
    25. 25)
      • 25. Cui, X.L., Shi, X.M., Li, H., et al: ‘A shuffle frog-leaping algorithm for test scheduling of 2D/3D SOC’. IEEE Int. Conf. Solid-State and Integrated Circuit Technology (ICSICT), Xi'an, China, 2012, pp. 13.
    26. 26)
      • 26. Kaibartta, T., Das, D.K.: ‘Testing of 3D IC with minimum power using genetic algorithm’ (IDT, Amman, 2015), pp. 112117.
    27. 27)
      • 27. Yao, C., Saluja, K.K., Ramanathan, P.: ‘Power and thermal constrained test scheduling under deep submicron technologies’, IEEE Trans. CAD Integr. Circuits Syst., 2011, 30, (2), pp. 317322.
    28. 28)
      • 28. Marinissen, E.J., Chakraborty, K.: ‘A set of benchmarks for modular testing of SOCs’. Proc. Int. Test Conf. (ITC), Baltimore, MD, 2002, pp. 519528.
    29. 29)
      • 29. Iyenger, V., Chakraborty, K., Marinissen, E.J.: ‘Test wrapper and test access mechanism Co-optimization for system-on-chip’, J. Electron. Test.:Theory Appl. (JETTA), 2002, 18, pp. 213230.
    30. 30)
      • 30. Roy, S.K., Giri, C.: ‘Design-for-test and test time optimization for 3D SOCs’. IEEE Int. Test Conf. (ITC), Fort Worth, TX, 2017, pp. 110.
    31. 31)
      • 31. Wu, X., Chen, Y., Chakrabarty, K., et al: ‘Test-access mechanism optimization for core-based three-dimensional SOCs’, Microelectron. J., 2010, 41, (10), pp. 601615.
    32. 32)
      • 32. Chattopadhyay, S., Reddy, K.S.: ‘Genetic algorithm based test scheduling and test access mechanism design for system-on-chips’. Proc. Int. Conf. VLSI Design, New Delhi, India, 2003, pp. 341346.
    33. 33)
      • 33. Pradhan, M., Giri, C., Rahaman, H., et al: ‘Optimizing test time for core-based 3-d integrated circuits by a technique of bi-partitioning’. Proc. IEEE (EWDTS), Kiev, 2014, pp. 14.
    34. 34)
      • 34. Roy, S., Ghosh, P., Rahaman, H., et al: ‘Session based core test scheduling for 3D SOCs’. IEEE Computer Society Annual Symp. VLSI, Tampa, FL, 2014, pp. 196201.
    35. 35)
      • 35. Kaibartta, T., Giri, C., Rahaman, H., et al: ‘Optimizing test time for core-based 3-D integrated circuits by genetic algorithm’ (ASQED, KulaLumpur, 2015), pp. 6267.
    36. 36)
      • 36. Ambramovic, M., Miller, D.T., Roy, R.K.: ‘Dynamic redundancy identification in automatic test generation’, IEEE Trans. CAD Integr. Circuits Syst., 1992, 11, (3), pp. 404407.
    37. 37)
      • 37. Johnson, D.S., Garey, M.: ‘Computers and intractability: a guide to the theory of NP-completeness’ (W. H. Freeman and Co., New York, NY, USA, 1979).
    38. 38)
      • 38. Corno, F., Prinetto, P., Rebaudengo, M., et al: ‘GATTO: a genetic algorithm for automatic test pattern generation for large synchronous sequential circuits’, IEEE Trans. CAD Integr. Circuits Syst., 1996, 15, (8), pp. 9911000.
    39. 39)
      • 39. Chattopadhyay, S., Choudhary, N.: ‘Genetic algorithm based approach for low power combinational circuit testing’. 16th Int. Conf. on VLSI Design (VLSID), 2003. Proc., New Delhi, India, 2003, pp. 552557.
    40. 40)
      • 40. Giri, C., Roy, S.K., Banerjee, B., et al: ‘Scan chain design targeting dual power and delay optimization for 3D integrated circuit’. Int. Conf. Advances in Computing, Control, and Telecommunication Technologies, Trivandrum, Kerala, India, 2009, pp. 845849.
    41. 41)
      • 41. Banerjee, S., Majumder, S., Das, D.K.: ‘Partitioning-based test time reduction for core-based 3D ICs’. 19th IEEE Int. Symp. VDAT, Ahmedabad, India, 2015, pp. 16.

Related content

This is a required field
Please enter a valid email address